
1	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

EVTV ESP32 CANDue

Tensilica Xtensa LX6
ESP32 WROOM Microcontroller

With Dual CAN Bus Ports
WiFi and Bluetooth BLE

2	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

INTRODUCTION

This document describes the EVTV ESP32 CANdue Microcontroller single-board
computer.

Since 2015, EVTV has very successfully produced our own version of the popular
Arduino Due microcontroller board. Using the Arduino R3 form factor, this EVTV
product added a couple of key elements for
our needs, specifically onboard EEPROM
memory and a Controller Area Network
(CAN) port. Almost everything involved
with electric vehicles requires
communication and CAN has emerged as the
common protocol not only for electric vehicles,
but really all modern automobiles.

With its integrated CAN port and a much more durable and robust mini-B printer
port style USB connector, this has become the go-to device for any sort of
inexpensive controller application requiring CAN. The 84MHz clockspeed and 32-
bit architecture has made this a very quick and capable device for most
applications of any sort.

Further, it is fully compatible with the Arduino Integrated Design Environment
(IDE). This enormously popular free software has allowed millions to learn to
program microprocessors. It’s clean, simple, installs easily and it is free.

But the pace of development in technology continues. And today, features such as
WiFi and Bluetooth Low Energy, unheard of on such a small single board
computer, have actually now been subsumed into individual chips.

Espressif has introduced there Tensilica Xtensa line of microcontrollers and the
ESP32 version features a 240Mhz dual-core 32-bit controller with Wifi and
Bluetooth communications built right into the chip.

ESP32	integrates	Wi-Fi	(2.4	GHz	band)	and	Bluetooth	4.2	wireless	radio	solutions	on	a	
single	chip,	along	with	dual	high	performance	cores,	Ultra	Low	Power	co-processor	and	
several	peripherals.	Powered	by	40	nm	technology,	ESP32	provides	a	robust,	highly	
integrated	platform	to	meet	the	continuous	demands	for	efficient	power	usage,	compact	
design,	security,	high	performance,	and	reliability.	

3	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

This represents a three-fold increase in speed with some very key communications
features. Bluetooth Low Energy (BLE) version 4.2 is particularly interesting in
that it allows easy integration of controllers and smart phones. The ESP32 chip
has become a darling of the Internet of Things (ioT) community.

And so EVTV introduces the EVTV ESP32 CANDue. This is physically very
nearly the same board form factor, with the ESP32 Wifi/Bluetooth chip at 240MHz,
and TWO CAN ports. Screw terminals allow easy access to wire to CAN busses
and automotive 12v power.

It runs easily on automotive 12v and has onboard power supply to drop that down
to the 3.3v levels used on these microcontrollers.

While the EVTV CANdue remains a staple, the EVTV ESP32CANDue represents
the next generation of this popular little board and provides an additional CAN
port, much higher USB port speeds, and WiFi and Bluetooth wireless
communications – all on a 4x2 inch board.
	
For us, one of the most valuable features of the ESP32 chip is an included internal
Controller Area Network (CAN) controller. But to use this feature, you must
provide a CAN transceiver chip to actually interface with a CAN network.

Introduced in 1988 by Bosch Gmbh, CAN has become the defacto communications
protocol used on virtually all modern automobiles but particularly all modern
electric vehicles.

The Texa Instruments SN65HVD234 chip is used in applications employing the
controller area network (CAN) serial communication physical layer in accordance
with the ISO 11898 standard. As a CAN transceiver, each provides transmit and
receive capability between the differential CAN bus and a CAN controller, with
signaling rates up to 1 Mbps.

Designed for operation in especially harsh environments, the device features cross-
wire protection, overvoltage protection up to ±36 V, loss of ground protection,
overtemperature (thermal shutdown) protection, and common-mode transient
protection of ±100 V. These devices operate over a wide –7 V to 12 V common-mode
range. This transceiver is the interface between the host CAN controller on the
microprocessor and the differential CAN bus used in industrial, building
automation, transportation, and automotive applications.

Collin Kidder wrote the due_can	library available for all Arduino CAN
applications. This library provides advanced interrupt features, filters, and masks
far beyond the earlier libraries available for CAN adapters on the 8-bit Arduino
boards making CAN communications an EASY software task instead of a chore
and with performance just not attainable with the earlier chips and libraries.

4	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

In automotive applications in the electric vehicle field, this can be the difference
between success and failure. We’ve learned the hard way that the CAN frame
rates of the Tesla Model S, for example, can easily exceed 1500 frames per second,
and the existing hardware and software solutions for Arduino just cannot deal with
this without dropping frames.

The CAN interface uses four screw terminals on the edge of the board that are
named CAN0 and CAN1 in software by convention and include CANHI and
CANLO connections for the differential CAN bus.

With this generation, we have added a second CAN channel CAN1. This uses a
new Microchip MCP2517FD CAN controller offering a new “flexible data rate”
concept and frame lengths as high as 64-bytes. Automotive OEM’s are rapidly
adopting this new CAN protocol because it makes it much faster and easier to
transport largish firmware upgrades to other devices on the CAN bus.

CAN1 CAN be operated as a normal CAN bus participant as long as the FD
features are not used. But you cannot mix and match devices on the same bus that
use both CAN2.0 and CAN FD.

12V	POWER	

Software development on Arduino boards commonly involves powering the board at
+5vdc by USB connection that is also used to upload the software. Additionally, a
barrel connector is provided for 9-16v to power the board without USB.

In automotive applications, this barrel connector is again not sufficiently robust. It
can easily vibrate loose, leaving your board disconnected from the circuit.

We have provided two screw terminal connections for 12v power and the 12v
return – usually frame ground. This allows you to easily and securely connect your
EVTV ESP32 CANdue microcontroller to vehicle power. Typically, you would
turn on the board which would automatically initialize and begin running the last
program loaded, when powered up by 12v.

In this way, you can easily connect by USB to upload programs or make
configuration changes to existing programs. But then you can disconnect the
laptop and put it away. The board will faithfully come up and run the new
software or configuration whenever powered by 12v.

5	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

	

TENSILICA XTENSA ESP32
We	first	encountered	descriptions	of	this	new	Chinese	multicontroller	chip	by	Espressif	in	
December	2015.		These	32-bit	chips	were	not	widely	available	until	the	spring	of	2016	and	
we	really	wanted	to	do	something	with	one	then.			But	documentation	was	meager	and	
there	was	talk	of	developing	an	Arduino	IDE	interface	for	it.		So	we	adopted	a	wait-and-see	
watch	on	this	device.	
	
The	exciting	part	was	the	inclusion	of	both	WiFi	and	Bluetooth	
wireless	communications	IN	the	microprocessor	and	the	dual	
core	capability.			
	
We	were	VERY	interested	in	Blue	Tooth	Low	Energy	BLE	as	a	
medium	for	developing	Smart	Phone/Tablet	displays	for	all	of	
our	control	products.	
	
But	early	Bluetooth	devices	were	quite	limited.		The	Adafruit		
nRF	module	we	first	tried	was	limited	to	a	total	of	30	
“characteristics”	or	variables	that	could	be	interfaced	and	
suffered	badly	from	blocking	issues.		Most	of	our	controllers	
have	CAN	bus	timing	requirements	and	cannot	simply	wait	around	for	Bluetooth	
transmissions	to	be	completed.	
	
At the core of this module is the ESP32-D0WDQ6 chip*. The chip embedded is
designed to be scalable and adaptive. There are two CPU cores that can be individually
controlled, and the clock frequency is adjustable from 80 MHz to 240 MHz. The user
may also power off the CPU and make use of the low-power co-processor to constantly
monitor the peripherals for changes or crossing of thresholds. It includes the freeRTOS
operating system and so the BLE and radio functions can run separately on a different
core from your main program, eliminating many of the blocking issues and delays.

Using Wi-Fi allows a large physical range and direct connection to the internet through a
Wi-Fi router, while using Bluetooth allows the user to conveniently connect to the phone
or broadcast low energy beacons for its detection.

ESP32 supports a data rate of up to 150 Mbps, and 20.5 dBm output power at the
antenna to ensure the widest physical range. As such the chip does offer industry-leading
specifications and the best performance for electronic integration, range, power
consumption, and connectivity.

The operating system chosen for ESP32 is freeRTOS with LwIP; TLS 1.2 with hardware
acceleration is built in as well. Secure (encrypted) over the air (OTA) upgrade is also

6	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

supported, so that developers can continually upgrade their products even after their
release.

	This	means	communications	can	be	handled	by	ONE	processor	while	the	normal	
operations	are	handled	by	the	other,	and	BOTH	run	at	240MHz,	about	three	times	the	
speed	of	our	existing	SAM3X	processor.		It’s	a	twofer-one	deal.	
	
Further,	it	featured	an	unlimited	number	of	services	and	characteristics	(think	variables)	
that	can	be	advertised	and	updated	via	BLE.		AND	it	can	act	not	only	as	a	peripheral	
(server)	but	also	a	client	(the	normal	Smart	Phone)	role.			
	
This	opens	the	door	to	our	ESP32	controller	in	turn	monitoring	and	controlling	OTHER	
BLE	sensors	for	items	such		as	voltage,	temperature,	current,	etc.	and	bringing	all	that	
together	for	a	single	interface	to	the	Smart	Phone.		That’s	pretty	exciting.	
	
The	good	news	is	that	the	Arduino	IDE	interface	DID	come	about.		The	bad	news	is	that	the	
BLE	and	WiFi	support	within	it	ranged	from	non-existent	to	a	horror.	
	
But	the	community	continued	to	work	on	this	over	time	and	today,	WiFi,	BLE,	and	
multitasking	appear	to	be	readily	available	via	the	Arduino	IDE	interface.	And	improving	
as	we	go	along.	
	

Better,	a	true	open	source	hero	has	emerged	in	the	form	
of	Neil	Kolban	who	authored	a	detailed	document	
covering	the	ESP32.		Better	yet,	he	has	continued	to	
update	it	almost	continuously	and	at	this	writing,	the	
latest	edition	was	issued	in	January	2018.		
https://leanpub.com/kolban-ESP32/		It’s	$4.99	and	
worth	about	8x	that	amount.		He’s	consummately	
qualified	to	write	it	and	has	done	an	excellent	service	
documenting	the	ESP32	which	of	course	as	a	Chinese	chip	

had	some	serious	weakness	in	the	area	of	documentation.	It’s	now	over	1000	pages.		
	
He	also	does	a	series	of	of	excellent	video	tutorials	specifically	on	the	ESP32	and	BLE.		
https://www.youtube.com/watch?v=2_vlF_02VXk	
	
Kolban	is	a	senior	engineer	at	Salient	Process	of	Sacramento	California,	working	on	
Business	Process	Management	and	Decision	Management	software	for	IBM	mainframe	
environments.		He	actually	resides	in	North	Richland	Hills	Texas.		He	has	a	Masters	degree	
in	Computer	Science	from	the	University	of	Glasgow,	Scotland.	
	
He’s	actually	gone	quite	beyond	this	and	developed	some	C++	classes	specifically	for	the	
ESP32	BLE	function.		https://github.com/nkolban	
	

7	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

From	a	historical	perspective,	I	may	have	lived	too	long.		In	October	of	1977,	Digital	
Equipment	introduced	the	VAX	11/780	mini-computer,	a	head	to	head	competitor	to	the	
venerated	IBM	360.		
	
In	1984	Reinhold	P	Weicker	wrote	a	benchmark	program	that	would	perform	roughly	one	
million	integer	instructions	per	second	on	either	minicomputer.		He	called	it	the	
Dhrystone	benchmark	as	a	bit	of	a	pun	on	the	floating	point	operation	benchmark	popular	
at	the	time,	the	Whetstone.		In	any	event,	the	Dhrystone	Million	Instructions	Per	Second	or	
DMIPS	has	served	as	a	handy	benchmark	of	computer	processing	power	since.	
	
The	Teslilica	ESP	32	is	rated	at	600	DMIPS.		That	is,	this	little	chip,	widely	available	for	less	
than	$3.50,	is	about	600	times	more	powerful	than	the	two	leading	minicomputers	of	
1977,	the	DEC	VAX	11/780	and	the	IBM360.	
	
A	more	modern	comparison	would	be	to	the	original	Raspberry	Pi	running	at	700	MHz,	
almost	three	times	the	clock	speed	of	the	ESP32,	with	847	DMIPS.	
	
With	Bluetooth	Low	Energy	and	WiFi	built	in,	you	can	see	why	we	are	excited	about	this	
little	chip.	
	
ESP32-D0WDQ6 contains two low-power Xtensa® 32-bit LX6 microprocessors. The
internal memory includes:

▪ 448 kB of ROM for booting and core functions. �

▪ 520 kB (8 kB RTC FAST Memory included) of on-chip SRAM for data and
instruction. �– 8 kB of SRAM in RTC, which is called RTC FAST Memory and
can be used for data storage; it is accessed by the main CPU during RTC Boot
from the Deep-sleep mode. �

▪ 8 kB of SRAM in RTC, which is called RTC SLOW Memory and can be accessed by
the co-processor during the Deep-sleep mode. �

▪ 1 kbit of eFuse, of which 256 bits are used for the system (MAC address and chip
configuration) and the remaining 768 bits are reserved for customer applications,
including Flash-Encryption and Chip-ID. �

Features of the ESP32 include the following:[3]

• Processors:
• CPU: Xtensa dual-core (or single-core) 32-bit LX6 microprocessor, operating at 160 or

240 MHz and performing at up to 600 DMIPS	
• Ultra low power (ULP) co-processor

• Memory: 520 KB SRAM
• Wireless connectivity:

8	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

• Wi-Fi: 802.11 b/g/n	
• Bluetooth: v4.2 BR/EDR and BLE

• Peripheral interfaces:
• 12-bit SAR ADC up to 18 channels	
• 2 × 8-bit DACs	
• 10 × touch sensors (capacitive sensing GPIOs)	
• Temperature sensor
• 4 × SPI	
• 2 × I²S interfaces	
• 2 × I²C interfaces	
• 3 × UART	
• SD/SDIO/CE-ATA/MMC/eMMC host controller	
• SDIO/SPI slave controller
• Ethernet MAC interface with dedicated DMA and IEEE 1588 Precision Time

Protocol support	
• CAN bus 2.0	
• Infrared remote controller (TX/RX, up to 8 channels)
• Motor PWM	
• LED PWM (up to 16 channels)	
• Hall effect sensor	
• Ultra low power analog pre-amplifier

• Security:
• IEEE 802.11 standard security features all supported, including WFA, WPA/WPA2 and

WAPI
• Secure boot
• Flash encryption
• 1024-bit OTP, up to 768-bit for customers
• Cryptographic hardware acceleration: AES, SHA-2, RSA, elliptic curve

cryptography (ECC), random number generator (RNG)	
• Power management:

• Internal low-dropout regulator	
• Individual power domain for RTC
• 5uA deep sleep current
• Wake up from GPIO interrupt, timer, ADC measurements, capacitive touch sensor interrupt

9	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

ESP32	BLOCK	DIAGRAM	

	

	
	

ESP32	MODULE	PINOUT	
	
The	EVTV	ESP32	CANDue	uses	a	38-pin	Espressif	ESP32-WROOM	module.		This	is	a	bit	
different	from	the	Atmel	chips	you	may	be	accustomed	to	in	that	it	is	much	more	limited	in	
the	number	of	pins	available.		But	who	ever	used	all	those	anyway?		And	the	ESP32	allows	
general	purpose	input	and	output	(GPIO)	on	almost	ALL	pins	and	so	you	can	define	them	
as	ADC,	DAC,	digital	in,	digital	out	etc.		with	great	flexibility.	

10	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

	

There	are	of	course	a	few	provisos	and	special	purpose	pins,	such	as	the	CAN	output	pins	
that	could	be	used	for	GPIO	but	if	you	want	CAN	you	must	use	the	pins	dedicated	to	that.	
The	diagram	shows	the	variety	of	purposes	each	pin	can	be	used	for.	
	
We	have	tried	to	map	the	pins	to	our	Arduino	form	factor	board	as	artfully	as	possible	
allowing	minimum	confusion	between	the	Arduino	interface,	the	ESP	IDF	programming	
interface,	and	the	pin	numbers	themselves.	

11	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

SPECIFICATIONS	

12	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

13	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

	
	

	

14	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

	 	

15	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

	

16	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

	

	

17	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

	

	

18	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

	
	
	
	
	
	
	
	
	 	

19	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

USB	COMMUNICATIONS	CIRCUIT	
	
The	ESP32	module	by	convention	uses	two	general	purpose	input/output	(GPIO)	pins,	
GPIO	5	(pin	34)	and	GPIO	18	(35)	as	a	Universal	Asynchronous	Receiver	Transmitter	
(UART)	serial	interface.		Pin	35	is	used	as	the	TX	or	transmit	line	while	pin	34	is	used	to	
receive	(RX).	
	
A	Future	Technology	Devices	Internal	FT2232H	Dual	High	Speed	USB	chip	is	used	to	
translate	this	UART	port	to	the	more	commonly	available	and	usable	Universal	Serial	Bus	
or	USB	port.		The	EVTV	ESP32	CANDue	provides	this	on	a	sturdy	USB	mini-B	printer	port	
style	connector	we	simply	find	more	physically	robust	than	the	tiny	USB	ports	that	have	
become	popular.	
	
The	FT2232H	is	FTDI’s	5th	generation	USB	chip	and	supports	USB	2.0	High	Speed	at	up	to	
480	Mbps.	

CAN	CIRCUIT	
	
The	ESP32	chip	features	an	integral	CAN	controller.		This	connection	appears	on	pin	27	
(CANRX0)	and	pin	28	CANTX0	of	the	module.	
	
The	module	does	not	feature	the	actual	CAN	transceiver	necessary	to	transmit	and	receive	
CAN	level	signals.		A	Texas	Instruments	SN65HVD234	transceiver	chip	U2	translates	
CANTX0	and	CANRX0	to	the	appropriate	differential	CAN0 HI	and	CAN0 LO	signal	
outputs	available	at	the	screw	terminal	connector	X1	as	H0	and	L0.		These	outputs	are	
120ohm	terminated	and	filtered	to	ground.		The	transceiver	ENABLE	signal	is	tied	directly	
to	+3.3v	holding	it	enabled	at	all	times.	
	
To	provide	a	second	CAN	channel,	a	Microchip	MCP2517FD	CAN	controller	chip	is	
connected	to	the	processor	via	the	Serial	Peripheral	Interface	bus	(SPI)	using	the	usual	
MOSI	(processor	pin	37),	SCK	(30)	and	MISO(31)	connections	available	on	the	processor	
module.		Note	that	this	SPI	bus	is	also	made	available	for	other	addressable	devices	via	a	
six	pin	connector.	
	
This	controller	produces	the	CANRX1	and	CANTX1	logic	outputs	that	are	used	by	a	
MCP2562FD	transceiver	chip,	U5,	to	produce	the	second	CAN1 HI	and	CAN1 LO	signals	
provided	as	H1 and	L1	at	the	X1	connector	identically	to	the	CAN0	bus.		
	
This	MCP2517FD	chip	includes	the	latest	Flexible	Data	Rate	(FD)	protocol	in	addition	to	
the	normal	CAN2.0B.		This	allows	higher	data	rates	on	the	CAN	bus	and	most	automobile	
manufacturers	are	expected	to	adopt	FD	in	the	next	two	years.		
	
Better,	this	chip	provides	for	up	to	32	filters	and	masks	on	incoming	CAN	messages,	which	
can	make	programming	CAN	much	easier	and	more	flexible.	

20	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

Finally,	the	MCP2517FD	allows	CAN	frames	to	have	up	to	64	bytes	of	data	payload,	eight	
times	the	data	in	a	normal	CAN2.0B	frame.	
	
The	built-in	CAN	module	(CAN0)	in	the	ESP32	is	not	CAN-FD	compatible	so	only	CAN1	
should	be	connected	to	such	busses.	
	
	

CAN PROGRAMMING
The EVTV CANdue Microcontroller is in all respects program compatible with the
Arduino Integrated Design Environment.

To select the board, in the Arduino IDE simply select

	TOOLS	

	BOARD	

	ESP32	Dev	Module	
	
In	your	program,	you	will	want	to	include	the	ESP32_CAN	library	using	the	statement:	

#include "esp32_can.h”
	
See	the	examples	included	with	the	esp32_can	library	for	further	instructions	on	use.	
	

ESP32_CAN
esp32__can	is	a	board	specific		library	written	by	Collin	Kidder	of	Sparta	Michigan.		
The	latest	version	is	always	available	at	http://github.com/collin80.		It	provides	functions	
and	methods	to	easily	deal	with	the	very	powerful	CAN	bus	transceiver	functions	available	
on	the	EVTV	ESP32	CANDue	Microcontroller,	including	the	improved	capabilities	of	the	
MicroChip	MCP2517FD	chip.	
	
The	Arduino	IDE	(Integrated	Design	Environment)	provides	a	basic	C++	programming	
language	syntax	with	some	curious	“extensions”	to	deal	with	hardware	easily	and	directly.		

21	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

These	extensions	are	essentially	hardware	specific	and	deal	with	things	like	digital	input	
and	output	pins,	analog	to	digital	conversion	pins,	and	pulse	width	modulated	output	pins.	
	
And	so,	both	the	Arduino	hardware	and	the	Arduino	IDE	“language”	are	curiously	adapted	
to	dealing	with	hardware	and	sensors	and	the	outside	world	–	lights,	switches,	
potentiometers,		temperature	sensors,	etc.	
	
The	hardware	of	the	Arduino	is	endlessly	extensible	by	the	addition	of	“shields”.		Shields	
are	printed	circuit	boards	with	additional	hardware	that	can	basically	“plug	in”	to	the	
headers	on	the	main	Arduino	Due	board	and	so	connect	to	it.	
	
In	theory,	the	manipulation	of	pins	and	data	on	them	will	of	course	operate	any	hardware	
provided	on	shields.	
	
As	Yogi	Berra	says,	in	theory,	theory	and	practice	are	the	same,	but	in	practice,	they	aren’t.		
Much	hardware	has	very	involved	data	schemes	to	either	send	data	to	it	or	retrieve	data	
from	it.			
	
And	so	we	find	the	language	of	Arduino	is	ALSO	extensible.		We	do	this	with	“libraries”	
that	basically	provide	new	C++	CLASS	structures	and	methods	that	act	to	extend	the	
language.		And	these	hide	most	of	the	detail	of	dealing	with	the	hardware	device,	reducing	
it	to	an	OBJECT	you	can	easily	command	with	much	simpler	instructions.	
	
To	add	a	library,	you	usually	simply	add	it	to	your	users/Arduino/Libraries	directory.		But	
in	each	program	where	you	use	that	library,	you	must	also	add	an	“include”	statement.		
This	causes	the	library	to	be	included	when	the	program	is	compiled,	and	calls	to	functions	
and	methods	in	that	library	are	then	linked	into	the	resulting	program.	
	

#include<esp32_can>; //This is an include statement
	
And	so	you	may	have	MANY	libraries	in	your	users/Arduino/libraries	directory,	but	only	
those	specified	with	include	statements	will	be	compiled	into	any	particular	program.	

CAN	PORTS	
	
The	EVTV	ESP32	CANDue	Microcontroller	offers	two	CAN	ports	designated	CAN0 and	
CAN1.	

INITIALIZATIONS	AND	BEGINNINGS	
	
So	our	first	requirement		is	an	include	statement.	
	

22	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

#include<esp32_can>; //This is an include statement
	
Using	this	include	file	will	automatically	create	CAN0	and	CAN1	objects	for	you,	ready	to	
setup	for	CAN	bus	access.	Our	second	is	to	INITIALIZE	the	CAN	port	we	want	to	use	with	a	
begin	statement.		We	can	do	either	or	both.	
	
	

if (CAN0.begin(500000))

 {

 Serial.println("Using CAN0 – initialization completed.\n");

 }

 else Serial.println("CAN0 initialization (sync) ERROR\n");
	
The	basic	initialization	is	handled	by		

CAN0.begin(500000)
	
Note	that	500000	is	the	data	rate	500kbps		
	
If	Can0	initialization	is	successful,	the	CAN0.begin	routine	will	return	a	value	of	1	which	
is	Boolean	TRUE.	
	
As	you	can	see	above,	we	used	this	feature	to	determine	whether	CAN	initialization	was	
successful	and	send	a	message	out	the	Serial	port	to	display	on	screen.	
	
Finally,	we	need	to	establish	some	very	specific	variables	to	handle	CAN	frame	data	that	
we	want	to	send	and	CAN	frame	data	that	we	will	be	receiving.		These	variables	are	of	type	
CAN_FRAME.	
	

CAN_FRAME outFrame, inFrame;
	

CAN_FRAME	DATA	TYPE	STRUCTURE	
	
In	this	example,	we	have	set	two	variables,	outFrame	and	inFrame of	the	CAN_FRAME	
type.	
	
CAN_FRAME	is	actually	a	STRUCTURE	–	a	variable	form	that	contains	a	number	of	other	
variables	within	its	structural	envelope.		To	send	CAN	data,	we	have	to	populate	one	of	
these	frames	with	our	data	we	want	to	send	(outFrame).		And	to	receive	CAN	data,	we	
have	to	have	this	variable	structure	available		to	store	the	received	data	(inFrame).	

23	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

	
The	CAN	protocol	has	a		number	of	options	but	is	basically	pretty	simple.		Some	
housekeeping	data	up	front	including	the	message	ID,	how	long	the	data	payload	is,	and	
some	other	incidentals,	and	then	a	data	payload	of	0	to	8	bytes.	The	CAN1	object	is	CAN-FD	
compatible.	CAN-FD	changes	the	way	CAN	works	a	bit.	Instead	of	0-8	data	bytes	it	is	
possible	to	send	0-64	bytes.	This	will	be	covered	later	on.	
	
The	easiest	way	to	deal	with	that	is	set	up	a	structure	with	ALL	of	the	elements	possible	in	
a	CAN	message	frame.		You	fill	in	the	ones	you	need	and	once	you	have	everything	you	
want	accounted	for	-	then	send	the	frame	with	one	call.		It’s	kind	of	like	filling	out	a	
message	form	before	handing	it	to	the	telegrapher	to	send.	Here	are	the	raw	structures	
used:	
	
typedef union {
 uint64_t int64;
 uint32_t int32[2];
 uint16_t int16[4];
 uint8_t int8[8];
} BytesUnion;

typedef struct
{
 uint32_t id; // 29 bit if ide set, 11 bit otherwise
 uint32_t fid; // family ID - used internally to library
 uint8_t rtr; // Remote Transmission Request (1 = RTR, 0 = data frame)
 uint8_t priority; // Priority but only for TX frames and optional (0-31)
 uint8_t extended; // Extended ID flag
 uint32_t time; // CAN timer value when mailbox message was received.
 uint8_t length; // Number of data bytes
 BytesUnion data; // 64 bytes - lots of ways to access it.
} CAN_FRAME;

	
	
	
	
And	so	we	find	that	outFrame	actually	has	a	number	of	structural	elements.			
	
outFrame.id	 –	32 bit variable containing the CAN message ID.
This can be either 11 bits or 29 bits long. With two important
uses. The ID is used to create a transmit priority on the CAN
bus. When multiple devices on the bus try to send at once the
lowest ID wins automatically. This allows frames with low IDs to
break through congestion and be delivered anyway.

24	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

The second important usage is that the ID is used by receiving
devices to determine the type of data in the frame. For
instance, a motor controller might know that messages with ID
0x232 are meant to tell it the requested torque and RPM.
	
outFrame.fid	–32-bit	variable	for	family	ID.	Used	internally	by	the	CAN	library	so	it	is	
best	not	to	put	anything	into	this	field.	The	value	in	the	field	is	not	of	much	use	outside	the	
internal	code	of	the	library.	
	
outFrame.rtr	–	8-bit	variable	–	Remote	Transmission	Request.	RTR	has	been	
deprecated	for	some	time	but	there	are	still	some	rare	devices	that	use	it.	The	purpose	of	
RTR	is	to	signal	another	device	on	the	bus	that	we’d	like	to	receive	some	piece	of	
information.	We	might	send	an	RTR	frame	with	ID	0x123	to	some	other	device.	When	the	
device	sees	this	RTR	frame	it	will	then	send	back	a	certain	group	of	data.	But,	it	is	not	
commonly	used	and	should	be	set	to	0	unless	you’re	absolutely	sure	you	want	to	use	it.	
Setting	RTR	will	zero	out	all	of	your	data	bytes	when	sending	no	matter	what	you	set	them	
to.	
	
outFrame.priority	–	(1	byte)	Transmit	priority	from	0	to	31.	It	is	not	commonly	used	
and	should	not	be	set	unless	there	are	specific	requirements.	Messages	with	a	higher	
transmit	priority	will	be	sent	before	messages	with	a	lower	priority.	This	can	somewhat	
short	circuit	the	usual	ID	based	priority	scheme	on	the	bus.	In	most	all	cases	this	field	can	
be	left	at	its	default	value.	
	
outFrame.extended	–	(1	byte)	Extended	Addressing	(29-bit)	0	=	11-bit/1=29bit	
	
outFrame.time	–	(4	bytes)	–	Time	stamp	set	by	hardware	when	this	frame	came	in	
(received	frames)	
	
outFrame.length		-	(1	byte)	The	number	of	data	bytes	in	this	frame.	Ranges	from	0	–	8.	
You	can	send	frames	with	no	data	bytes	if	desired.	Setting	this	field	any	higher	than	8	will	
cause	the	value	to	be	set	to	8	when	sending.	
	
outFrame.data	–	(8	bytes)	A	union	that	is	8	bytes	long.	Allows	for	retrieval	of	data	
bytes	from	received	frames	and	setting	bytes	to	send	for	transmitted	frames.	A	union	is	a	
way	to	access	the	same	bytes	in	different	ways.	This	particular	union	allows	for	setting	
and	retrieving	the	8	bytes	individually,	in	groups	of	2,	4	or	all	8	at	once.	It	should	be	noted	
that	not	all	frames	are	sent	or	received	with	8	data	bytes.	Setting	bytes	past	the	length	
you’ve	specified	when	sending	will	just	be	ignored.	Any	bytes	past	the	length	in	a	received	
frame	will	be	0.	All	multi-byte	values	are	stored	little	endian.	There	are	two	ways	to	store	a	
value	that	takes	multiple	bytes	to	store.	One	can	store	the	value	such	that	the	first	byte	is	
the	lowest	part	of	the	value	or	such	that	the	first	byte	is	the	highest	part	of	the	value.	For	
instance,	take	the	value	0x1234.	This	value	takes	2	bytes	to	store:	0x12	and	0x34.	We	can	
store	it	in	memory	as	0x12	followed	by	0x34	or	we	can	store	it	as	0x34	followed	by	0x12.	
The	first	method	is	called	big	endian	while	the	second	method	is	called	little	endian	and	is	
the	way	this	library	and	the	ESP32	works.	

25	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

outFrame.data.int64[0]	–	Allows	for	getting	or	setting	all	8	possible	bytes	at	once.	
This	can	be	used	to	save	or	load	all	the	bytes	in	a	single	line.	It	is	called	uint64	because	it	is	
an	unsigned	integer	64	bits	(8	bytes)	wide.		
	
Example:	outFrame.data.int64[0] = 0x1122334455667788;	
	
It	might	be	counter	intuitive	but	because	the	value	is	stored	little	endian	you	will	find	that	
the	above	line	sets	the	first	byte	to	0x88,	the	second	to	0x77,	and	so	on	until	the	8th	byte	is	
set	to	0x11.	
				
outFrame.data.int32[2]	–	Allows	one	to	get	or	set	the	8	bytes	in	groups	of	4	bytes.	
That	is,	outFrame.data.int32[0]	is	bytes	0,	1,	2,	3	and	
outFrame.data.int32[1]	is	bytes	4,	5,	6,	7.		

outFrame.data.int16[4]	–	Allows	one	to	get	or	set	the	8	bytes	in	groups	of	2	bytes	
per	entry.	outFrame.data.int16[0]	is	bytes	0	and	1,
outFrame.data.int16[3]	is	bytes	6	and	7.	
	
outFrame.data.int8[8]	–	Allows	for	direct	access	to	all	of	the	bytes	individually.		
	
	
inFrame	has	exactly	the	same	structure,	but	of	course	in	a	different	location	in	memory.	
	
	
Note	that	the	CAN	message	structure	simply	contains	the	bytes.		The	software	on	either	
end	of	the	transmission	determines	whether	these	bytes	are	signed	or	unsigned,	and	
whether	they	use	Least	Significant	Bit	first	or	Most	Significant	Bit	first	and	actually	what	to	
do	with	them.	
	
One	can	cast	the	unsigned	values	from	CAN_FRAME	to	signed	types	if	necessary:	

int myVariable = (int16_t)outFrame.data.int16[0];

	
When	we	define	a	variable	as	type	CAN_FRAME,	it	simply	reserves	bytes	in	memory	under	
that	name	(inFrame)to	hold	the	frame	and	allows	access	by	use	of	the	frame	subunits	
(inFrame.id, inFrame.data.int8[5]).		You	can	define	as	many	CAN_FRAME	
variables	as	you	like.	
	
	
	
	
	
	
	

26	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

	

SENDING	CAN	FRAMES	
	
Sending	CAN	frames	is	actually	very	simple.		As	described,	we	load	the	CAN	frame	we	want	
to	send,	and	then	send	it	with	a	single	call.	

27	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

CAN_FRAME myFrame;

myFrame.id = 0x25A;

myFrame.length = 1;

myFrame.data.int8[0] = 128;

CAN0.sendFrame(myFrame);

Here	we	define	variable	myFrame	as	type CAN_FRAME.			
	
We	then	set	the	id	to	0x25A.		By	convention,	and	you’ll	rarely	see	this	otherwise,	CAN	
message	IDs	are	almost	always	referred	to	in	the	hexadecimal	numbering	system.		We	
note	this	by	prepending	0x	to	the	number.	
	
We	also	set	myFrame.length	to	1	indicating	that	we	will	only	be	transmitting	a	single	
data	byte.	
	
We	define	that	data	byte	as	containing	the	decimal	value	128.	
	
And	finally,	we	send	the	frame	with	the	statement	CAN0.sendFrame(myFrame);
	
We’re	basically	telling	the	CAN0	hardware	port	to	make	up	a	CAN	message	from	the	data	
in	the	myFrame	structured	variable,	and	send	it	out	on	the	bus.	
	
Note	that	there	are	a	number	of	elements	defined	in	the	structure	myFrame	that	we	didn’t	
set	at	all.		The	defaults,	usually	zero,	will	be	fine.		In	the	majority	of	cases,	all	you	need	is	an	
ID,	a	data	length	and	your	data.	
	
In	fact,	in	this	case,	to	send	another	frame	with	new	data,	I	know	that	the	id	and	length	are	
already	set.			

myFrame.data.int8[0] = 129;

CAN0.sendFrame(myFrame);

And	so	we	see	that	we	have	sent	an	entire	new	frame	with	just	the	data	byte	changing.	
	

	
	

28	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

RECEIVING	BUFFERED	CAN	FRAMES	
	
We	can	receive	CAN	frames	in	two	ways.		The	CAN	library	actually	buffers	incoming	
frames	which	we	can	check	for	or	poll	using	the	available	command.			
	
We	can	also	set	up	a	callback	such	that	any	time	a	frame	is	received,	it	is	routed	to	a	
method	in	our	program	that	is	designed	to	handle	the	incoming	frame.	This	will	be	
described	later.	
	

CAN_FRAME inFrame;

if (CAN0.available())

{

 CAN0.read(inFrame);

}
	
We	would	place	this	call	somewhere	in	our	LOOP	portion	of	the	Arduino	program.		
Periodically,	it	would	poll	for	CAN0.available()	which	would	return	1	if	true	and	0
otherwise.	
	
If	there	is	a	frame	available,	the	CAN0.read	command	retrieves	it	and	loads	all	the	data	
into	our	already	defined	inFrame	structure.	And	so	CAN0.read	actually	passes	the	
address	of	the	inFrame	structure	to	the	object	which	then	uses	that	address	to	copy	data	
out	of	the	buffer	and	into		the	inFrame	structured	variable.	
	
Once	we	have	received	the	data,	we	can	then	go	examine	it	in	the	inFrame	structure.	
	

CAN	FRAME	FILTERS		
	
CAN	can	support	a	number	of	devices	in	theory.		In	practice,	above	about	30	devices	and	
the	bus	becomes	quite	busy.		But	the	central	tenet	of	CAN	is	that	there	really	is	no	
intelligence	in	the	protocol.		The	messages	aren’t	even	addressed	to	any	specific	device.		
Each	device	simply	broadcasts	their	messages	to	everyone	on	the	bus.		No	checking	to	see	
if	it	was	received.		No	handshakes.		Nothing.	
	
The	intelligence	is	supposed	to	be	in	the	devices	themselves.		The	DMOC645	controller	for	
example,	knows	that	a	torque	command	will	be	received	under	message	ID	0x232	and	
that	the	first	two	bytes	will	contain	the	command	as	a	16-bit	unsigned	integer	that	is	offset	
by	30000.		So	it	receives	the	value,	subtracts	30000,	and	takes	the	result	as	a	torque	
command.	
	

29	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

The	Vehicle	Control	Unit	broadcasts	this	torque	command	and	sets	the	message	ID		to	
0x232.		It	doesn’t	know	if	there	are	any	DMOC645’s	on	the	bus,	doesn’t	know	how	many,	
and	doesn’t	know	or	care	what	it	does	with	it.		It	simply	translates	throttle	inputs	to	a	
torque	command,	adds	30000	to	it,	and	puts	it	in	the	first	two	bytes	of	the	payload.	
	
So	what	does	the	DMOC645	device	do	when	it	receives	a	CAN	message	with	ID	0x332?		
Nothing.		It	has	no	knowledge	of	0x332	messages	so	it	simply	discards	them.		Actually,	it	
is	worse	than	that.		Since	it	has	no	knowledge	of	0x332	messages,	it	actually	sets	a	filter	in	
the	CAN	transceiver	chip	to	not	even	interrupt	it	for	0x332	messages.		As	a	result,	it	never	
receives	them	at	all.		The	internal	CAN	transceiver	receives	it,	and	simply	ignores	it	–	
dramatically	reducing	the	computational	overhead	for	the	DMOC645	multicontroller.	
	
So	picture	the	DMOC645	as	actually	LOOKING	for	0x232	messages,	and	totally	ignoring,	in	
fact	filtering	out,	all	0x332	messages.	
	
In	this	way,	each	device	on	the	bus	has	a	list	of	messages	it	sends,	and	the	data	it	wants	to	
send	in	them.		And	it	also	has	a	list	of	messages	it	will	receive,	and	how	to	deal	with	data	in	
those.		And	typically	any	specific	device	might	have	3-5	messages	it	sends,	and	another	3	
or	4	it	responds	to.		ALL	OTHER	TRAFFIC	IS	TOTALLY	IGNORED.	
	
Some	devices	broadcast	a	single	message	id	with	specific	information	in	it	and	don’t	listen	
for	ANY	messages	incoming.		This	would	be	like	a	temperature	sensor.		It	only	does	one	
thing	–	measure	temperature.		And	it	reports	it	on	the	CAN	bus	for	any	who	care.		But	it	
doesn’t	DO	anything	else,	and	doesn’t	need	information	from	any	other	device	at	all.	
	
esp32_can	features	some	powerful	filtering	options.		If	you	want	to	monitor	all	the	
traffic	on	a	CAN	bus,	obviously	you	don’t	want	to	filter	out	anything.		But	for	most	
applications,	you	are	looking	for	a	relative	handful	of	messages,	and	it	is	an	enormous	
reduction	in	processor	overhead	to	set	filters	to	ignore	everything	else.	In	fact,	both	Can0
and	Can1	default	to	accepting	NO	frames.	You	must	specify	the	frames	you	are	interested	
in	before	you	will	receive	any.	If	you	do	not	want	to	use	filtering	you	can	use	the	
watchFor();	method	to	accept	all	frames	like	so:	
	

CAN0.watchFor(); //Accept any frame
	
	
In	order	to	accept	only	specific	sets	of	frames	use	the	setRXFilter	command.	

CAN0.setRXFilter(msgid, mask, extended);
	
This	command	takes	three	arguments	(with	an	optional	fourth).	The	first	is	the	message	id	
of	the	messages	you	WANT	to	receive.		The	second	element	is	the	MASK	and	the	third	
indicates	whether	this	is	for	standard	11-bit	message	ids	(false)	or	extended	29-bit	
message	ids	(true).	

30	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

CAN0.setRXFilter(0x232, 0x7FF, false);
	
In	this	example,	the	message	ID	included	is 0x232.		The	third	element	is	false	
indicating	standard	11-bit	addresses	are	used.	
	
The	MASK	in	this	case	indicates	that	we	want	to	receive	ONLY	messages	that	exactly	
match	the	0x232	message	ID			
	
Our	mask,	0x7FF	would	be	represented	in	binary	as	 	 	0111 1111 1111	

Note	that	11	of	12	bits	are	set.			Our	standard	message	IDs	are	limited	to	11	bits	and	so	all	
messages	must	be	numbered	in	the	range	000	to	7FF.	Think	of	the	mask	as	defining	the	
specific	bits	that	MUST	MATCH.	Anywhere	there	is	a	‘1’	in	the	bits	of	the	mask	the	
corresponding	bit	in	the	filter	ID	must	match	the	corresponding	bit	in	the	incoming	frame	
ID.	And	so	this	mask	indicates	that	all	11	bits	must	match	for	a	message	to	be	valid.	
	
If	we	set	a	mask	of	0x7F0	 	 	 	 	 	 0111 1111 0000
And	our	base	message	is 0x230 0010 0011 0000

We	logically	AND	those	two	to	get	the	result 0010 0011 0000

If	we	receive	a	message	of 0x23A 0010 0011 1010
And	we	logically	AND	that	with	the	mask	to	get	the	result 0010 0011 0000

We	see	that	the	results	of	the	FIRST	AND	and	the	results	of	the	SECOND	AND	are	equal	and	
we	accept	the	message.
	
Our	mask	indicates	that	the	last	four	bits	do	NOT	have	to	match	but	the	first	7	DO.		This	
would	accept	any	number	from	0x230	to	0x23F.	
	
If	we	set	the	mask	to	0x700		 	 	 	 	 0111 0000 0000	
	
Our	mask	indicates	that	only	the	first	three	bits	need	match.		We	can	accept	any	message	
ID	from	0x200 to	0x2FF.	
	
And	of	course	a	mask	of	0x000	would	accept	all	messages.		It	would	be	pointless	to	set	
such	a	filter.	

CAN1.setRXFilter(0x18FF50e5, 0x1FFFFFFF, true);
	
In	this	filter	example,	we	use	29-bit	extended	addresses.		The	mask	indicates	that	we	must	
have	an	exact	match	on	all	bits	for	messages	with	ID 0x18FF50e5			
	
Note	that	you	can	set	up	to	32	different	filters	covering	32	different	message	ranges	and	
any	can	be	either	11-bit	or	29-bit.	

31	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

	

EASY	CAN	FILTERS	
	
CAN	filters	can	be	somewhat	easier	to	employ	using	the	watchFor	functions.	
	

CAN0.watchFor();
	
As	previously	mentioned,	this	command	allows	ALL	messages	to	be	accepted.	But	better,	it	
actually	sets	up	one	mailbox	for	standard	frames,	and	a	second	mailbox	for	extended	
frames.		All	messages	of	either	standard	or	extended	frame	are	then	accepted.	It	is	valid	to	
call	this	command	after	having	already	set	up	other	filters.	In	that	case	those	other	filters	
will	selectively	accept	some	frames	and	this	call	will	cause	every	other	frame	to	get	
accepted	in	one	giant	group.	The	reasons	to	do	this	will	become	more	clear	when	we	cover	
callbacks.	
	

CAN0.watchFor(0x740);
	
This	command	will	cause	CAN0	to	watch	for	a	specific	address,	in	this	case,	0x740.		
Whether	it	is	extended	or	standard	addressing	is	set	automatically	depending	on	the	
address	provided.	This	will	use	one	of	the	32	filters	possible.	
	

CAN0.watchFor(0x620, 0x7F0);
	
This	command	specifies	a	message	0x620	and	a	mask	0x7F0.		It	applies	the	mask	just	as	
described	earlier	to	accept	all	messages	from	0x620	through	0x62F.	

CAN0.watchForRange(0x620, 0x64F);
	
This	command	accepts	messages	by	message	ID	in	the	range	from	the	first	message	ID	
given	to	the	second.	It	will	attempt	to	create	a	mask	and	ID	suitable	for	this.	This	process	
may	not	be	exact	as	the	mask	can	only	work	in	binary.	The	resultant	filter	might	allow	a	
larger	range	through	than	you	specified.	For	exact	filtering	you	should	use	one	of	the	
methods	that	allow	for	explicitly	specifying	the	mask	and	ID.	But,	this	form	of	the	method	
can	be	useful	when	getting	started	in	order	to	not	have	to	deal	with	determining	masks	
and	filter	IDs	yourself.	
	
	

32	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

CAN	CALLBACKS	
	
An	earlier	description	provided	the	details	of	buffered	CAN	frames	and	how	to	retrieve	
them.	
	
There	is	a	second	way	to	receive	CAN	frames	that	many	find	more	efficient.		This	is	
through	CAN	callbacks.	They	are	also	called	interrupts	as	they	are	executed	based	on	
hardware	interrupts	and	they	can	interrupt	the	execution	of	your	program.	On	the	ESP32	
they	are	not	truly	called	from	a	hardware	interrupt	but	they	will	still	cause	the	ESP32	to	
immediately	execute	your	callback	function.	This	will	temporarily	interrupt	the	rest	of	
your	program.	Its	current	state	will	be	automatically	saved	and	restored	for	you	as	this	
happens.	
	
CAN	callbacks	are	simply	a	means	of	calling	a	processing	method	in	your	program,	when	
and	only	when	a	CAN	frame	is	received.		In	this	way,	your	program	can	attend	to	other	
duties	without	the	overhead	of	checking	to	see	if	a	CAN	frame	has	come	in.			
	
When	a	valid	message	DOES	arrive	and	qualifies	through	the	filters	set,	the	CAN	object	
calls	the	defined	method	in	your	program	and	passes	it	the	CAN	frame.		It	can	then	process	
the	CAN	frame	and	return.	
	
	
	
As	the	normal	program	loop	can	cycle	hundreds	of	thousands	of	times	per	second,	this	
vastly	reduces	the	overhead	of	CAN	messages,	which	might	only	be	received	30	times	per	
second.	
	
Better,	you	can	have	different	CAN	handler	methods	for	different	received	message	IDs.	
	

CAN0.setRXFilter(1, 0x18FF50e5, 0x1FFFFFFF, true);

CAN0.setCallback(1, convertIncoming);
	
In	the	first	line	above,	we	see	our	familiar	filter	statement.		But	we	have	a	new	element,	the	
first,		set	to	1.		When	you	set	a	filter,	the	library	normally	picks	the	first	free	mailbox	for	
you.		There	are	32	“mailboxes”	provisioned	as	a	function	of	the	chip	design	and	this	is	why	
you	can	have	up	to	32	filters.		
	
	But	you	can	optionally	designate	a	specific	mailbox	to	use	0-31.		We	can	use	this	to	set	our	
filter,	and	then	tie	the	output	to	a	given	routine	in	our	program.	
	
The	second	line	introduces	a	new	function,		setCallback.			This	function	then	lets	us	tie	
any	valid	message	filtered	through	mailbox	1	to	be	routed	to	our	routine	in	our	program	
that	handles	this.	
	

33	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

In	our	Arduino	program	structure,	you	always	have	a	setup	routine	and	a	loop	routine.	
	

void setup(){

Some setup statements.…

}

void loop () {

 Some statements we execute over and over without end.

}
	
We	want	to	add	a	method	to	our	program	to	handle	this	CAN	message,	but	we	do	NOT	
want	it	to	be	part	of	the	main	program	loop	or	the	setup.	
	

byte fromCharger[15];

void convertIncoming(CAN_FRAME *frame){

 fromCharger[3]=(uint8_t) (frame->id>>24);

 fromCharger[2]=(uint8_t) (frame->id>>16);

 fromCharger[1]=(uint8_t) (frame->id>>8);

 fromCharger[0]=(uint8_t) (frame->id>>0);

 for(int i=4; i<12; i++){

 fromCharger[i]=frame->data.int8[i-4];

 }

 calculateCharger();

}
	
The	library	passes	the	CAN	message	data	structure	to	the	convertIncoming	method	as	
frame.		In	this	method,	we	are	extracting	information	from	the	frame	and	arranging	it	in	a	
15	byte	array	titled	fromCharger	and	then	calling	ANOTHER	method,	
calculateCharger,		which	has	access	to	fromCharger as	well.	
	
We	can	set	up	to	32	callbacks	and	each	can	be	to	the	same	method,	or	other	entirely	
different	methods	in	our	program,	all	based	on	their	incoming	addresses.	
	

34	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

Finally,	we	can	set	a	GENERAL	callback	to	handle	all	mailboxes	that	do	not	otherwise	have	
a	callback	associated	with	them.	
	

CAN0.setGeneralCallback(someOtherMethod);
	
It	will	be	applied	to	any	mailboxes	that	do	not	have	an	interrupt	attached.	This	might	be	
useful	in	cases	where	you’ve	set	up	special	callbacks	for	important	frames	but	you	want	to	
accept	everything	else	on	the	bus	and	peek	at	all	the	traffic.		
	
This	combination	is	actually	quite	powerful.		For	example,	we	could	set	filters	and	
interrupts	for	two	named	mailboxes,	and	then	set	six	more	filters	that	don’t	specify	a	
mailbox.		Then	we	can	set	one	interrupt	for	the	first	mailbox,	another	interrupt	for	the	
second	mailbox,	and	then	a	general	interrupt	to	handle	the	remaining	six.	
	
In	this	way,	we	can	route	messages	to	specific	methods	based	on	their	message	ID.		The	
methods	are	ONLY	called	when	a	specific	message	is	received.		Once	processed,	control	is	
returned	to	the	overall	general	Arduino	program	loop.	
	
CAN	interrupts	can	be	removed	with	the	command		
	

CAN0.removeCallback(0);

This	would	remove	the	interrupt	attached	to	mailbox	0.		If	the	mailbox	is	omitted,			
	
CAN0.removeCallback(); will	remove	ALL	Can0	interrupts.	
	

CAN0.removeGeneralCallback(); will remove the general callback.

This	section	provides	descriptions	of	the	basic	functions	of	due_can	and	these	are	certainly	
sufficient	to	write	powerful	CAN	programs.		But	there	are	many	more	functions	in	the	
library.		Refer	to	the	library	source	code	and	example	programs	for	more	detailed	
information.		
	

PUTTING	IT	ALL	TOGETHER	–	A	CAN	EXAMPLE	
	
Let’s	put	all	this	new	CAN	knowledge	together	in	a	simple	but	tricky	example.		We	have	
two	Arduino	Due’s	that	we	start	up	at	two	different	times.		The	millis()	method	will	give	us	
the	number	of	milliseconds	that	have	occurred	since	we	started	the	machine.	
	
In	this	case,	we	want	to	display	the	time	in	hours	minutes	and	seconds	on	BOTH	Arduino	
Due’s	Basically	we	want	to	synchronize	our	watches	via	CAN.	

35	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

	
On	the	first	Arduino	Due:	
	

#include <esp32_can>

#define Serial SerialUSB

CAN_FRAME outFrame;

uint8_t correction; //8bit integer holding a correction
	

void setup(){ //Our setup function

 Serial.begin(115000);

 If (CAN0.begin(500000);){

 Serial.println(“Can0 initialized…”);

 }

 else Serial.println(“Can0 failed…”);
	

 OutFrame.id = 0x05B; //Let’s use message ID 0x05B

 correction=5; //5 milliseconds for propogation

}
	

36	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

void loop(){

 outFrame.data.int32[0] = millis() + correction;

 CAN0.send(outFrame);

 int seconds = (int)(millis()/1000)%60;

 int minutes = (int)((millis()/(1000*60))%60);

 int hours = (int)((millis()/(1000*60*60))%24);

 char buffer[9];

sprintf(buffer,"%02d:%02d:%02d.%03d",hours,minutes,seconds,milli
seconds);

 Serial.println(buffer);

}
	
This	program	sets	up	CAN0	as	our	output	port	at	a	data	rate	of	500KBPS.	
In	the	main	loop,	it	prints	the	current	time	since	startup	in	hours,	minutes	and	seconds	
since	startup	out	the	serial	port	and	transmits	a	four	byte	value	representing	current	
milliseconds	plus	a	correction	value	of	5	milliseconds	to	account	for	the	propagation	delay	
in	sending	our	time	over	the	bus.		And	it	does	this	in	the	standard	Arduino	Due	little	
endian	format	–	storing	this	value	in	the	first	four	bytes	using	message	address	0x05B.		
	
	
On	the	second	Arduino	Due	device:	
	

37	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

#include<esp32_can>;

void setup(){ //Our setup function

 Serial.begin(115000);

 If (CAN0.begin(500000){

 Serial.println(“Can0 initialized…”);

 }

 else Serial.println(“Can0 failed…”);

 CAN0.setRXFilter(1, 0x05B, 0x7FF, false);

 CAN0.setCallback(1, getOurTime);

}

void loop(){

}

void getOurTime (CAN_FRAME *timeFrame){

 long remillis=timeFrame.data.int32[0];

 int milliseconds = (int(remillis/1)%1000 ;

 int seconds = (int)(remillis/1000)%60;

 int minutes = (int)((remillis/(1000*60))%60);

 int hours = (int)((remillis/(1000*60*60))%24);

 char buffer[9];

sprintf(buffer,"%02d:%02d:%02d.%03d",hours,minutes,seconds,milli
seconds);

 Serial.println(buffer);

}
	
	
	
This	program	is	a	little	bit	different.	First,	we	are	going	to	set	a	filter	on	mailbox	1	that	
ONLY	responds	to	0x05B	message	IDs.			
	

38	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

The	CAN	bus	has	little	intelligence,	but	it	DOES	work	out	bus	contention	on	different	
devices.		Lower	ID	numbers	correspond	to	higher	priority.	If	two	devices	on	the	bus	want	
to	both	send	at	the	same	time	the	one	sending	a	frame	with	the	lower	ID	number	will	win.	
We	are	only	going	to	transmit	this	time	mark	once	per	second,	and	we	are	going	to	correct	
it	with	a	calibration	factor	accounting	for	propagation	delay.		But	we	DO	want	that	
message	to	get	through	on	time.		And	so	by	setting	a	LOW	message	address	ID	number,	we	
give	it	a	higher	priority	on	the	bus.		In	this	way,	as	we	add	devices	on	the	bus	with	higher	
addresses,	our		delay	should	not	change	much	even	though	the	traffic	on	the	bus	grows	
enormously.	
	
Second,	we	set	a	callback	for	Can0	that	passes	received	frames	to	the	function	
getOurTime.		This	function	receives	the	frame	from	the	library	and	note	that	we	do	not	
really	explicitly	declare	the	timeFrame	variable	elsewhere.	
	
getOurTime sets	a	local	remillis	variable	to	timeFrame.data.int32[0].		Recall	
that	.int32[0]	is	an	alternate	data	structure	representing	the	first	four	bytes	in	a	data	
structure	of	up	to	8	bytes.		Since	millis()	returns	a	long	integer	of	four	bytes,	in	little	
endian	format,	this	is	perfect.		We	can	simply	copy	this	value	to	the	remillis	variable	on	
the	second	machine.	
	
Finally,	our	interrupt	function	prints	the	new	formatted	hours,	minutes	and	seconds	out	
the	serial	port.	
	
If	we	set	up	these	two	ESP32s	connected	to	two	laptops	displaying	the	USB	output	on	
respective	terminal	programs,	the	objective	is	for	the	printed	times		to	match.		If	they	do	
not,	we	can	correct	by	going	back	to	the	first	program	and	changing	the	correct	variable	
value	from	5	to	something	else	and	in	this	way	synchronizing	the	two	systems.	
	
Note	that	in	this	case,	the	standard	Arduino	loop	function	contains	no	code.		In	fact,	you	
can	place	12000	lines	of	code	in	this	loop	and	have	the	program	do	whatever	you	like.		It	
will	have	no	effect	on	our	time	function	at	all.		This	is	because	that	loop	program	iteration	
will	be	interrupted	on	receipt	of	a	0x05B	time	message	and	the	time	printed	again.		Once	
that	very	brief	operation	has	concluded,	the	program	code	in	loop	will	continue	from	
exactly	where	it	left	off	when	interrupted.	

CAN	FLEXIBLE	DATA	RATE	
	
Up	to	this	point	Can0 and	Can1	have	been	interchangeable.	Any	of	the	previous	
examples	using	Can0	could	have	just	as	easily	used	Can1	and	they’d	have	worked	the	
exact	same	way.	However,	Can1	has	a	powerful	secret	–	it	also	is	able	to	go	into	CAN-FD	
mode.	So,	what	is	CAN-FD	and	how	is	it	different	from	regular	CAN?	The	biggest	difference	
is	that	CAN-FD	allows	for	up	to	64	data	bytes	instead	of	8.	This	can	drastically	cut	down	on	
the	number	of	frames	necessary	to	send	large	amounts	of	data	over	the	CAN	bus.	One	very	
compelling	application	is	firmware	updates	over	CAN.	CAN-FD	does	this	by	living	up	to	the	

39	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

extra	2	letters	on	the	end.	FD	stands	for	“flexible	datarate.”	CAN-FD	can	send	the	data	
bytes	at	a	different	speed	than	the	rest	of	the	frame	(the	ID,	length,	etc).	The	CAN	bus	
might	be	running	at	a	speed	of	500k	but	a	CAN-FD	device	could	send	the	data	bytes	at	up	
to	8,000,000	bits	per	second	instead.	It	will	still	always	send	the	rest	of	the	frame	at	the	
original	speed,	only	the	data	bytes	are	sped	up.	You	might	wonder,	what	happens	to	
regular	CAN	devices	if	a	CAN-FD	device	starts	to	transmit	at	8M	bits	per	second?	Well,	they	
fault.	You	cannot	send	any	CAN-FD	frames	on	a	CAN	bus	that	has	any	devices	that	are	not	
CAN-FD	compatible.	Even	one	incompatible	device	will	cause	the	bus	to	go	into	a	fault	
state	and	not	operate	properly	just	as	soon	as	a	CAN-FD	frame	is	sent.	But,	CAN-FD	
compatible	devices	can	exist	on	a	bus	full	of	regular	CAN	devices	–	it	just	cannot	send	any	
CAN-FD	frames	while	on	the	bus.	A	CAN-FD	device	can	still	send	regular	CAN	frames	as	
often	as	necessary	even	on	a	bus	with	devices	that	are	not	CAN-FD	compatible.	The	two	
types	of	frames	are	exclusive	and	a	CAN-FD	device	can	send	and	receive	either	type.	
	
At	the	moment	CAN-FD	is	very	new	and	very	rare.	However,	projections	are	that	CAN-FD	
will	be	in	all	major	manufacturer’s	cars	by	2020.	So,	the	future	of	CAN-FD	is	not	very	far	
off.	The	EVTV	ESP32	CANDue	board	is	compatible	with	this	upcoming	bus	type	and	is	
ready	when	CAN-FD	compatible	vehicles	begin	to	appear.	
	
In	order	to	support	the	larger	frames	possible	with	CAN-FD	the	ESP32	CAN	library	for	
Can1	has	a	second	set	of	structures	for	CAN-FD:	
	
typedef union {
 uint64_t int64[8];
 uint32_t int32[16];
 uint16_t int16[32];
 uint8_t int8[64];
} BytesUnion_FD;

typedef struct
{
 uint32_t id; // 29 bit if ide set, 11 bit otherwise
 uint32_t fid; // family ID - used internally to library
 uint8_t rrs; // RRS for CAN-FD (optional 12th standard ID bit)
 uint8_t priority; // Priority but only for TX frames and optional (0-
31)
 uint8_t extended; // Extended ID flag
 uint8_t fdMode; // 0 = normal CAN frame, 1 = CAN-FD frame
 uint32_t time; // CAN timer value when mailbox message was received.
 uint8_t length; // Number of data bytes
 BytesUnion_FD data; // 64 bytes - lots of ways to access it.
} CAN_FRAME_FD;
	
These are all mostly like the items previously covered for CAN frames but now the data structures are all
eight times larger. There are two other differences:

40	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

canFrame.rrs	–	(1	byte)	This	is	really	just	a	single	bit.	If	set	this	bit	can	be	added	to	the	
top	side	of	an	11	bit	ID	to	make	it	12	bits	instead.	There	are	NO	RTR	frames	on	CAN-FD.	
You	simply	cannot	send	a	CAN-FD	frame	as	RTR.	You	can	still	send	regular	CAN	frames	as	
RTR	even	with	a	CAN-FD	device	like	Can1.	
	
canFrame.fdMode	–	(1	byte)	This	bit	sets	whether	the	frame	is	FD	mode	or	not.	A	CAN-
FD	device	can	send	either	type	and	you	set	the	type	you	want	to	send	here.	This	field	is	
also	set	when	receiving	frames	to	specify	whether	the	frame	was	FD	or	not.	But,	you	might	
figure	that	out	anyway	if	you	see	that	the	frame	has	specified	it	has	32	bytes	of	data.	

	

ANALOG TO DIGITAL INPUTS

The	ESP32	integrates	two	12-bit	SAR	(Successive	Approximation	Register)	ADCs	
supporting	a	total	of	18	measurement	channels	(analog	enabled	pins).	

The	ADC	driver	API	supports	ADC1	(8	channels,	attached	to	GPIOs	32	-	39),	and	ADC2	(10	
channels,	attached	to	GPIOs	0,	2,	4,	12	-	15	and	25	-	27).	However,	the	usage	of	ADC2	has	
some	restrictions	for	the	application.	ADC2	is	used	by	the	Wi-Fi	driver.	Therefore	the	
application	can	only	use	ADC2	when	the	Wi-Fi	driver	has	not	started.		

	The	EVTV	ESP32	CANDue	is	designed	to	provide	ready	access	to	six	of	the	ADC`	
analog/digital	inputs	of	the	ESP	32	chips:	
	

• AO ADC1_CH5 GPIO 33 PIN 9
• A1 ADC1_CH4 GPIO 32 PIN 8
• A2 ADC1_CH3 GPIO 39 PIN 5
• A3 ADC1_CH0 GPIO 36 PIN 4
• 34 ADC1_CH6 GPIO 34 PIN 6
• 35 ADC1_CH2 GPIO 35 PIN 7

These	inputs	are	successive	approximation	with	a	maximum	resolution	of	12-bit	with	a	
maximum	sampling	rate	of	46kHz.		They	can	produce	a	digital	result	between	0	and	4096	
representing	voltages	up	to	3.3vdc	or	0.000805	(805	microvolts)	per	digit.		This	range	can	
be	expanded	to	1.1v	full	scale	for	a	resolution	of		0.000268	(268	microvolts)	per	digit.	
	
And	so	for	example,	if	you	used	external	circuitry	to	isolate	and	scale	400vdc	to	3.3v,	you	
could	read	that	voltage	to	an	accuracy	of	100	millivolts.	

41	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

	
Note	that	most	pins	on	the	ESP32	are	General	Purpose	Input	and	Output	(GPIO)	and	can	
be	configured	as	inputs	or	outputs	and	generally	as	analog	or	digital	quite	flexibly.		But	
while	that	is	the	intent,	actual	practice	varies	somewhat	and	these	particular	pins	are	
configurable	for	input	ONLY.		But	note	that	they	can	be	configured	for	DIGITAL	input	as	
easily	as	analog.	
	
Before	you	examine	the	listing	above	of	the	six	channels,	note	that	you	will	be	tempted	to	
make	sense	of	it	and	find	some	rational	pattern	to	it.		STOP.		DON’T	DO	THAT.		There	is	
nothing	rational	about	it.	
	
First,	chip	makers	often	offer	the	same	basic	chip	
die	and	functions	on	a	number	of	different	
packages,	in	different	physical	sizes	and	different	
pin	terminations	for	a	variety	of	reasons	including	
miniaturization	and	mechanical	and	robotic	
assembly.		So	by	all	rights	a	General	Puropose	
Input	Output	Pin	would	of	course	be	PIN	33	and	
we	would	call	it	pin	33.		But	if	we	offered	a	smaller	
package	with	a	reduced	number	of	pins,	of	course	
that	might	be	PHYSICAL	pin	9	on	the	chip.	
	
And	that	is	before	the	software/firmware	people	
ever	get	ahold	of	SOME	version	of	the	hardware.		
In	this	case	breaking	analog	to	digital	inputs	into	
two	banks	(ADC1	and	ADC2)	and	seven	channels	
(0-6	which	also	doesn’t	make	sense	but	it	IS	how	
programmers	think).	
	
And	THEN	you	have	the	case	of	someone	USING	
the	chip	on	an	electronic	circuit	board	and	wanting	
to	tie	THAT	somehow	to	a	pin	or	interface	for	the	
board	(in	this	case	designated	A0.	
	
And	then	of	course	you	have	the	application	
development	software	interface,	herein	where	we	
use	ADC1_CHANNEL_5. And	it	is	our	observation	that	EVERY	attempt	to	rationalize	
and	simplify	this	system	tends	to	MAKE	IT	WORSE.	

#include <driver/adc.h>
	
This	include	statement	provides	the	drivers	necessary	for	ADC	operations.	

adc1_config_width(ADC_WIDTH_12Bit);
	

42	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

This	statement	configures	the	resolution	for	ALL	7	channels	of	ADC1	as	12	bit	or	4096	
resolution.		Note	that	there	is	also	an	ADC2	series	of	channels,	but	they	are	almost	never	
used	as	they	are	shared	with	the	WiFi	function		of	the	ESP32.	

adc1_config_channel_atten(ADC1_CHANNEL_5, ADC_ATTEN_11db);
	
When VDD_A is 3.3V:

• 0dB attenuaton (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V
• 2.5dB attenuation (ADC_ATTEN_DB_2_5) gives full-scale voltage 1.5V
• 6dB attenuation (ADC_ATTEN_DB_6) gives full-scale voltage 2.2V
• 11dB attenuation (ADC_ATTEN_DB_11) gives full-scale voltage 3.9V At 11dB

attenuation the maximum voltage is limited by VDD_A, not the full scale voltage.
So 3.3v

This	has	the	effect	of	setting	the	scale	or	attenuation	of	a	specific	channel.		With	
attenuation	of	11db	you	will	be	able	to	handle	signals	of	up	to	3.3v,	the	operating	voltage	
of	the	chip	and	it	will	be	read	in	4096	increments	in	the	12	bit	resolution.	
Similarly,	the	least	attenuation	of	0db	would	mean	that	a	full	scale	indication	of	4096	
would	be	provided	in	response	to	a	1.1v	input.		And	so	finer	voltage	levels	can	be	
discerned.	
	
You	can	of	course	combine	this	with	external	resistive	voltage	dividers	to	conceivably	
measure	values	of	thousands	of	volts	by	dividing	the	whole	down	to	something	less	than	
3.3v	and	measuring	that.	

adc1_get_raw(ADC1_CHANNEL_5);

int val = adc1_get_raw(ADC1_CHANNEL_0);
	
Read	ADC1	channel	0	and	put	digital	value	into	the	integer	val.			
	
We	can	also	do	this	with	the	more	familiar	Arduino	Commands	but	with	less	functionality.	
If	you	accept	the	12	bit	and	11dB	defaults,	we	can	use	the	much	more	familiar	Arduino	
analog	read	syntax:	
	
pinMode(34,INPUT);

analogRead(34);

analogSetWidth(12); 9-12

analogSetAttenuation(ADC_6db); // all ADC pins

analogSetPinAttenuation(ADC_11db); // specific pin

43	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

 ADC_0db:
 sets no attenuation (1V input = ADC reading of 3959).

 ADC_2_5db:
 sets an attenuation of 1.34 (1V input = ADC reading of 2975).

 ADC_6db:
 sets an attenuation of 1.5 (1V input = ADC reading of 2086).

ADC_11db:
 sets an attenuation of 3.6 .(1V input = ADC reading of 1088)

analogSetCycles(8):
set the number of time cycles per sample. Default 8. Range: 1 to
255.

analogSetSamples(1); //Default 1 – number of samples averaged
per read call
	
	
ADC	depends	on	an	internal	reverence	voltage	of	nominally	1.1vdc.		But	this	voltage	can	
vary.		You	can	read	the	value	of	this	reference	voltage.	
	
adc2_vref_to_gpio(25);
analogRead(25);

The	values	returned	by	any	ADC	reading	are	also	not	precisely	linear	across	the	entire	
range.	Correcting	for	this	is	extremely	ugly	and	requires	the	use	of	a	polynomial	equation.			
	
 const double f1 = 1.7111361460487501e+001;
 const double f2 = 4.2319467860421662e+000;
 const double f3 = -1.9077375643188468e-002;
 const double f4 = 5.4338055402459246e-005;
 const double f5 = -8.7712931081088873e-008;
 const double f6 = 8.7526709101221588e-011;
 const double f7 = -5.6536248553232152e-014;
 const double f8 = 2.4073049082147032e-017;
 const double f9 = -6.7106284580950781e-021;
 const double f10 = 1.1781963823253708e-024;
 const double f11 = -1.1818752813719799e-028;
 const double f12 = 5.1642864552256602e-033;

44	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

double rd = analogRead(adcpin);

double correctedvalue=f1+f2*pow(rd,1)+f3*pow(rd,2)+f4*pow(rd,3)+f5*pow(rd,4)
+f6*pow(rd,5)+f7*pow(rd,6)+f8*pow(rd,7)+f9*pow(rd,8)+f10*pow(rd,9)+f11*pow(rd,10)+f12*pow(rd,11)
;

You	would	only	go	to	this	length	if	you	really	needed	better	accuracy	across	the	range.	
	

ANALOG OUTPUTS
The	ESP32	features	two	true	Digital	to	Analog	converters	on	GPIO	25	and	26.		The	syntax	
is	unique	to	the	ESP32	boards	and	is	somewhat	low	resolution	at	8-bits.	
	
But	it	will	produce	an	analog	output	voltage	from	about	0.080	to	3.300	vdc	in	255	
increments	
	
dacWrite(25,100);
	
This	command	would	produce	the	output	100/256*3.3vdc	or	1.289vdc.		This	is	a	very	low	
current	output	and	would	need	amplification	to	be	useful.		But	it	sufficiently	responsive	to	
produce	audio	output.	
	

DIGITAL I/O
All	the	above	mentioned	analog	input	pins	AND	the	DAC	analog	
output	pins	can	also	be	used	as	digital	INPUT	pins.		In	general	
they	cannot	be	used	as	digital	output	pins.	
	

pinMode(39,INPUT);

digitalRead(39);
	
The	pinmode	statement	only	has	to	be	performed	once.		
Thereafter,	the	digitalRead(39)	statement	will	return	a	1	if	
a	voltage	of	3.3v	appears	on	the	input	and	a	0	if	it	does	not.	
	
These	pins	CANNOT	be	used	for	digital	output	however.	
	
Almost	all	other	ESP32	pins	can	be	used	for	general	purpose	
digital	input	and	output	pins	in	theory.		In	practice,	our	board	

45	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

design	reserves	a	number	of	those	pins	for	duties	such	as	USB	serial	port	communications,	
additional	serial	ports,	two	CAN	ports,	and	Serial	Peripheral	Interface	pins.		The	following	
pins	are	then	provided	for	general	digital	input/output	duties.	
	

• GPIO	2	TX2	

• GPIO	4	RX2	

• GPIO	5	

• GPIO	12	

• GPIO	13	
	

• GPIO	14	

• GPIO	15	

• GPIO	21	SDA	

• GPIO	22	SCL	

• GPIO	27	

	
To	use	as	digital	output:		

pinMode(15,OUTPUT);

digitalWrite(15,HIGH);

digitalWrite(15,LOW);
	
Writing	HIGH	will	cause	the	output	pin	to	go	to	the	reference	voltage	of	3.3	volts.		Writing	
LOW	will	cause	the	output	to	go	to	0v.	Output	current	is	limited	to	40	milliamperes.	
GPIO	21	and	22	are	nominally	used	for	I2C	serial	communications.		They	are	connected	to	
3.3vdc	via	4.7k	pullup	resistors	on	the	board	and	so	they	exhibit	the	behavior	that	they	
will	read	high	with	a	digitalRead	statement	all	the	time	with	nothing	connected.		Any	
external	connection	will	overcome	this	of	course	with	a	high	or	low	value	and	similarly	
any	statement	to	digitalWrite	output	high	or	low	will	work	correctly	as	well.		But	their	
initial	power-on	state	would	read	as	a	HIGH.	
	

DIGITAL I/O INTERRUPTS
It	can	be	very	useful	to	use	the	digital	input	capability	of	the	ESP32CANDue	to	monitor	
external	events	and	act	on	them.		I	very	useful	feature	is	the	concept	of	digital	input	
interrupts.		
	
pinMode(34,INPUT);
attachInterrupt(digitalPinToInterrupt(34), MyFunction, FALLING);

void MyFunction()
{
 Serial.println(“External event occurred”);
 Return;

46	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

)
	
In	this	example,	GPIO	34	is	monitored	and	in	the	event	it	changes	from	a	HIGH	state	to	a	
LOW	state,		the	program	loop	will	be	halted	and	the	user	function	“MyFunction”	will	be	
executed.		As	soon	as	that	function	completes,	the	program	resumes	operation	where	it	
was	in	the	main	loop	when	it	was	interrupted.	
	
The	trigger	for	this	interrupt	can	be	specified	as	RISING,	FALLING,	or	CHANGE.		Obviously	
RISING	would	then	trigger	when	the	pin	changes	from	a	LOW	state	to	a	HIGH	state.		
CHANGE	triggers	with	EITHER	a	rising	or	falling	state.	
	
Any	pin	that	can	be	configured	for	digital	INPUT	can	be	used	for	interrupt	routines.		The	
pin	mode	and	interrupt	definition	would	normally	be	configured	ONCE	in	SETUP	while	the	
actual	function	would	appear	elsewhere	in	the	source	code.			Thereafter,	the	change	in	pin	
state	would	cause	execution	of	the	specified	function.	
	

	

	

	

PULSE WIDTH MODULATION
We	have	already	noted	that	the	ESP32CANDue	board	features	two	analog	outputs	on	GPIO	
25	and	26	with	the	very	simple	dacWrite	command.		We	didn’t	spend	much	space	
describing	it	because	they	really	aren’t	very	useful	in	the	grand	scheme	of	things.	

We	can	achieve	essentially	the	same	thing	on	ANY	GPIO	pin	that	can	be	used	as	output	
using	Pulse	Width	Modulation.	

Pulse	Width	Modulation	is	a	very	common	technique	where	we	can	vary	the	AVERAGE	
output	voltage	on	any	digital	pin	by	turning	it	to		ON	(digital	1	or	3.3v)	and	OFF	(digital	0,	
0v)	at	a	specific	rate.		That	rate	is	comprised	of	two	elements,	the	frequency	and	duty	
cycle.	

If	we	turn	the	output	ON	for	a	period	and	then	off	for	a	second	period	and	we	rinse	and	
repeat,	the	time	duration	sum	of	the	ON	and	OFF	periods	is	the	FREQUENCY	for	example.	

For	example,	if	we	turned	it	ON	for	8.33	milliseconds	and	OFF	for	8.33	millisconds,	the	
total	DURATION	of	our	waveform	would	be	16.66	milliseconds.		We	can	also	express	this	
as	the	number	of	cycles	of	this	waveform	–	60	complete	cycles	per	second	or	60	Hz.	So	60	
would	be	our	FREQUENCY.	

47	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

And	because	we	had	the	output	ON	for	half	the	waveform	and	OFF	for	the	other	half,	we	
would	say	we	had	a	50%	DUTY	CYCLE	and	our	average	output	voltage	would	be	around	
3.3v/2	or	1.65v.	

Of	course	if	we	turned	it	on	for	3.332	milliseconds	and	off	for	13.382	milliseconds,	we	
would	STILL	have	a	60Hz	waveform	but	our	DUTY	CYCLE	would	be	25%	and	our	output	
voltage	would	average	3.3/4	or		0.825	volts.	

At	somewhat	higher	frequencies,	this	average	output	voltage	consists	of	so	many	pulses,	
that	it	is	very	difficult	to	distinguish	from	a	true	analog	voltage	for	all	practical	purposes.	

The	ESP32	chip	allows	us	to	do	this	on	ANY	output	GPIO	at	an	astonishing	variety	of	
frequencies	and	resolutions	–	up	to	40	MHz	in	frequency	and	with	our	percentage	of	duty	
cycle	specified	not	to	0-100%	but	from	0	to	32768	discrete	steps.		But	these	limits	are	
somewhat	interactive	as	we	will	see.	

This	gives	us	an	equally	astonishing	control	over	precisely	what	the	average	output	
voltage	is	and	of	course	how	quickly	we	can	change	that.	

The	Arduino	had	a	very	similar	function	termed	analogWrite(pin, value)	where	
pin specified	the	output	pin,	usually	from	a	very	few	special	pins,	and	value	was	the	
PWM	duty	cycle	from	0	to	255	–	eight	bit	precision.	
	
There	IS	no	analogWrite	function	available	for	the	ESP32	chip	even	in	the	Arduino	IDE	
and	for	very	good	reason.			The	simplistic	analogWrite	is	not	sufficiently	complex	
syntax	to	take	advantage	of	the	flexibility	of	the	ESP32	chip.		The	8-bit	precision	was	a	bit	
limiting	and	there	is	no	provisions	in	the	function	to	change	the	frequency	at	all.		As	
different	Arduino	chips	indeed	use	different	clocks,	this	turned	into	a	very	complicated	
situation	with	regards	to	frequency.	
	
It	has	been	replaced	in	the	ESP32	by	the	ledcWrite(channel, duty cycle)	
function.		But	it	is	somewhat	more	complex	to	set	up	and	use	to	take	advantage	of	the	
greater	flexibility	and	power	of	this.	
	
The	basic	format	to	achieve	PWM	on	the	EVTV	ESP32CANdue	board:	
	
pinMode(13,OUTPUT);
ledcSetup(channel, frequency, resolution);
ledcAttachPin(GPIO pin, channel);
ledcWrite(channel, dutycycle);

CHANNEL.		The	ESP32	has	four	clocks	and	using	different	divisors	we	can	select	16	
channels	numbered	0-15.	

FREQUENCY	is	the	desired	frequency	in	Hz.	

RESOLUTION	is	the	number	of	bits	we	want	to	use	to	set	the	duty	cycle	and	must	be	

48	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

between	1	and	15.	

As	mentioned,	the	maximum	frequency	and	bits	are	interactive	and	based	on	the	80	MHz	
base	clock	of	the	chip.	MaxFreq=80,000,000/2bits	

And	so	we	can	work	this	out	for	you.	

RESOLUTION		 INCREMENTS		 MAX	FREQUENCY	
	
1	 	 	 2	 	 	 	 40000000	
2	 	 	 4	 	 	 	 20000000	
3	 	 	 8	 	 	 	 10000000	
4	 	 	 16	 	 	 	 		5000000	
5	 	 	 32	 	 	 	 		2500000	
6	 	 	 64	 	 	 	 		1250000	
7	 	 	 128	 	 		 	 				625000	
8	 	 	 256	 	 	 	 				312500	
9	 	 	 512	 	 	 	 				156250	
10	 	 	 1024	 	 	 	 						78125		
11	 	 	 2048	 	 	 	 						39062.50	
12	 	 	 4096	 	 	 	 						19531.25	
13	 	 	 8192	 	 	 	 								9765.62	
14	 	 	 16383		 	 	 								4882.81	
15	 	 	 32767		 	 	 								2441.41	
	
	
And	so	we	can	see	from	this	chart	that	we	could	set	the	resolution	to	12-bit	and	have	a	
luxurious	4096	discrete	increments	to	specify	our	duty	cycle	and	at	ANY	frequency	up	to	
19531	Hz	maximum.	
		

pinMode(13,OUTPUT);
ledcSetup(0,17500,12);
ledcAttachPin(13,0);
ledcWrite(0,2048);
	

This	will	set	GPIO	pin	13	up	to	exhibit	a	17.5kHz	waveform	and	a	50%	duty	cycle	for	an	
analog	output	of	1.65volts.	This	will	be	constant	and	continuous	until	you	change	it.	

Note	that	the	first	two	statements	only	need	to	be	executed	ONCE	in	setup.		Subsequently,	
any	iterations	of	ledcWrite(0,dutycycle)	will	set	the	PWM	duty	cycle	value	for	that	
channel	0	and	the	already	associated	pin	13.			And	so	you	can	easily	vary	the	duty	cycle	
anywhere	in	your	program.	

There	is	another	potentially	useful	function	ledcDetachPin(13)	that	will	disassociate	
pin	13	from	channel	0,	allowing	it	to	be	reassigned	for	other	duties.	

49	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

A	couple	of	useful	functions	allow	you	to	READ	the	state	of	the	PWM	pin	output.	

ledcRead(channel);	returns	the	current	PWM	value	actually	on	the	pin.	

ledcReadFreq(channel);	returns	the	current	frequency	of	the	waveform	on	the	pin.	

	

SERIAL PERIPHERAL
INTERFACE (SPI) PORT
We	previously	noted	that	the	CANFD	output	on	CAN1	is	provided	using		the	MicroChip	
MCP2517FD	chip.		This	communicates	with	the	ESP32	microprocessor	using	the	Serial	
Peripheral	Interface	at	a	relatively	high	20.0	Mbps.	

The	SPI	bus	allows	the	ESP32	to	act	as	a	MASTER	on	this	serial	bus	with	any	number	of	
SLAVE	devices.		A	SLAVE	is	turned	on	using	a	chip	select	signal	on	a	separate	output.		In	
the	case	of	CANFD,	GPIO5	is	used	as	the	CS	output	for	the	MCP2517FD	chip.	

As	one	of	the	original	features	of	the	Arduino	model,	an		In	Circuit	Serial	Programming	
(ICSP)	port	was	provided	to	allow	direct	programming	of	the	microcontroller.		As	the	
Arduino	is	normally	programmed	by	uploading	binaries	through	the	more	familiar	USB	
port,	it	was	almost	never	used	for	this	purpose.	

50	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

Rather,	and	by	convention,	the	pins	on	this	ICSP	port	were	used	as	a	Serial	Programming	
Interface	(SPI)	port.		And	it	became	the	standard	way	of	connecting	Arduino	shields	that	
featured	SPI	devices.	

We	have	retained	this	convention	on	the	EVTV	ESP32	CANDue	board.		The	diagram	below	
shows	the	pin	identifications	for	the	SPI	port.	

Pin	1	is	the	Master	In/Slave	Out	(MISO)	signal	connected	to	ESP32	pin	31.	

Pin	2	provides	3.3vdc	power.	

Pin	3	provides	the	Serial	Clock	signal	(SCK)	available	on	ESP32	pin	30.	

Pin	4	provides	the	Master	Out/Slave	In	(MOSI)	signal	from	ESP32	pin	37.	

Pin	5	is	conventionally	the	RESET	pin	used	for	ICSP	applications.		We’ve	connected	it	
to	the	BOOT	switched	ground	from	the	BOOT	switch.	It	CAN	be	used	as	Chip	Select.	

Pin	6	is	the	ground	return	for	the	3.3v	supply.	
	

51	

User	Manual	 	 November,	2018	

Copyright 2018 EVTV LLC 	

In	this	way,	you	can	make	connections	to	any	external	SPI	device	and	use	the	standard	
Arduino/ESP32	SPI	library	to	communicate	with	it.	

Any	unused	pin	from	the	available	digital	outputs	can	be	used	as	a	chip	select	(CS)	output	
to	your	SPI	device.		Set	it	to	LOW	to	select	your	device.	

Indeed,	you	can	connect	multiple	SPI	devices	to	this	port	and	operate	them	in	turn	by	
using	their	specific	CS	output	pins.	

The	BOOT	pin	GPIO-0	would	normally	be	used	as	Chip	Select.	

pinMode(0,OUTPUT);

digitalWrite(0,LOW); Chip Selected and device activated.

digitalWrite(0,HIGH); Chip De-selected and device inactivated.
	

	

	

	

	

	

	

