
Documentation	
	 	 June	 2015	

Copyright 2015 EVTV LLC 1

EVTV CANdue
Microcontroller

Arduino Due Compatible
Atmel SAM3X Microcontroller

With CAN Bus Port

Documentation	
	 	 June	 2015	

Copyright 2015 EVTV LLC 2

INTRODUCTION

This document describes the EVTV CANdue Microcontroller single-board
computer.

The introduction of the Arduino.cc organizations 32-bit DUE version of their
popular microcontroller board has received a lukewarm reception in the
Arduino community, largely due to the lower 3.3v operating voltage, lack of
onboard EEPROM memory, and slightly different pinout that makes
compatibility with earlier shields problematic.

We don’t share those sentiments and have been enormously enthusiastic over
the introduction of this very capable Atmel ARM Cortex based 84 MHz
controller. But we have had a couple of items on our “wish list” that we
would have liked them to do differently.

So we have designed and had manufactured our own version of this very
capabile microcontroller. It is pin and software compatible with Arduino Due.

USB	 Port.	 	 	

The Arduino Due features 2 USB ports but both are of the very lightweight
“micro” hardware version. In practice, these are actually quite fragile and
break off the board easily or lose connectivity with the board circuitry. We’ve
had numerous Arduino Due board failures that were simply broken or
dislodged USB port hardware – and by that we literally mean the metal
socket itself.

On the EVTV CANdue Microcontroller board we have eliminated the
“programming port” and associated circuitry and kept the “native port”
replacing the actual connector with the much more robust Mini B printer
version of USB. This is physically the strongest USB hardware.

The programming port on the Due offers little advantage. We have had no
difficulties “programming” the Arduino using the Native port.

By Native port, they refer to a USB port that is internally providedd by the
Atmel SAM3X chip itself. This port is actually much much faster than the
Programming port and is directly wired to the chip. It automatically adjusts

Documentation	
	 	 June	 2015	

Copyright 2015 EVTV LLC 3

to whatever data rate it is presented with. And it avoids many of the hidden
delays inherent in the programming port that lead to software anomalies
that can be very difficult to trace.

EEPROM	
	
The earlier Atmel chips used by Arduino included onboard electrically
erasable programmable read only memory or EEPROM. The Atmel SAM3X
microcontroller chip does not include this feature. But essentially ALL useful
programs written for such a device include certain “configuration items” or
selections that really only need to be made once or perhaps rarely, but they
DO need to be retained from one power cycle to the next.

EEPROM provides a space to write such variable configuration data into
memory and retain it more or less permanently. We’ve added a 2Mbit
STMicro EEPROM chip to the device to provide up to 256 kbytes of memory.

This chip allows either block or byte writes within 10ms, offers random and
sequential read modes, allows write protection of the entire array, and
features a read/write life of more than 4 million cycles. It will retain data for
more than 200 years.

This EEPROM chip is connected via the integrated circuit inter
communications I2C protocola and uses the SDA	 (pin	 20) and SCL	 (pin	 21) port

Documentation	
	 	 June	 2015	

Copyright 2015 EVTV LLC 4

on the board to communicate with the EEPROM. This may limit the ability
to use other shields that use pins 20 and 21 of the board.

CAN	 COMMUNICATIONS	
	
For us, one of the most valuable features of the SAM3X chip is an included
internal Controller Area Network (CAN) controller. But to use this feature,
you must provide a CAN transceiver chip to actually interface with a CAN
network.

Introduced in 1988 by Bosch Gmbh, CAN has become the defacto
communications protocol used on virtually all modern automobiles but
particularly all modern electric vehicles.

Automotive applications are a very small segment of the wider Arduino
community and so the Arduino organization did not devote the board real
estate necessary for CAN communications on their Arduino Due design.

By eliminating the programming USB port circuitry, we freed up sufficient
space to install the top of the CAN line – the Texas Instruments
SN65HVD234

The SN65HVD234 is used in applications employing the controller area
network (CAN) serial communication physical layer in accordance with the
ISO 11898 standard. As a CAN transceiver, each provides transmit and
receive capability between the differential CAN bus and a CAN controller,
with signaling rates up to 1 Mbps.

Designed for operation in especially harsh environments, the device features
cross-wire protection, overvoltage protection up to ±36 V, loss of ground
protection, overtemperature (thermal shutdown) protection, and common-
mode transient protection of ±100 V. These devices operate over a wide –7 V
to 12 V common-mode range. This transceiver is the interface between the
host CAN controller on the microprocessor and the differential CAN bus used
in industrial, building automation, transportation, and automotive
applications.

Our own Collin Kidder wrote the DUE_CAN	 library available for all Arduino
CAN applications using the SAM3X microcontroller. This library provides
advanced interrupt features far beyond the earlier libraries available for
CAN adapters on the 8-bit Arduino boards making CAN communications an
EASY software task instead of a chore and with performance just not
attainable with the earlier chips and libraries.

Documentation	
	 	 June	 2015	

Copyright 2015 EVTV LLC 5

In automotive applications in the electric vehicle field, this can be the
difference between success and failure. We’ve learned the hard way that the
CAN frame rates of the Tesla Model S, for example, can easily exceed 1500
frames per second, and the existing hardware and software solutions for
Arduino just cannot deal with this without dropping frames.

The CAN interface terminates in two screw terminals on the edge of the
board that are named CAN0 in software by convention and include CANHI
and CANLO connections for the differential CAN bus.

Additionally, solder bridge “lands” are provided on the board to terminate the
CAN connection with a standard 120 ohm resistance and a filter capacitor if
your application requires termination.

The CAN transceiver chip uses the CANRX	 and CANTX pins of the board
normally reserved for that task anyway, and so should pose no conflict with
other non-CAN shields.

12V	 POWER	

Software development on Arduino boards commonly involves powering the
board by USB connection that is also used to upload the software.
Additionally, a barrel connector is provided for 9-16v to power the board
without USB.

In automotive applications, this barrel connector is again not sufficiently
robust. It can easily vibrate loose, leaving your board disconnected from the
circuit.

We have provided two screw terminal connections for 12v power and the 12v
return – usually frame ground. This allows you to secuirely connect your
EVTV CANdue microcontroller to power. Typically, you would turn on the
board which would automatically initialize and begin running the last
program loaded, when powered up by 12v.

In this way, you can easily connect by USB to upload programs or make
configuration changes to existing programs. But then you can disconnect the
laptop and put it away. The board will faithfully come up and run the new
software or configuration whenever powered by 12v.

Documentation	
	 	 June	 2015	

Copyright 2015 EVTV LLC 6

CAN PROGRAMMING
The EVTV CANdue Microcontroller is in all respects program compatible
with the Arduino Integrated Design Environment.

To select the board, in the Arduino IDE simply select

	 TOOLS	

	 BOARD	

	 Arduino	 Due	 (Native	 	 USB	 Port)	
	
In	 your	 program,	 you	 will	 want	 to	 include	 the	 DUE_CAN	 libarary	 using	 the	
statement:	

#include <due_can.h>
	
See	 the	 examples	 included	 with	 the	 DUE_CAN	 library	 for	 further	 instructions	 on	 use.	

EEPROM PROGRAMMING
To	 use	 the	 EEPROM,	 you	 must	 include	 two	 libraries	 also	 written	 by	 Collin	 Kidder,	 	
	

#include due_wire

#Wire_EEPROM

All	 of	 these	 libraries	 available	 from	 http://github.com/Collin80	
	
	

Documentation	
	 	 June	 2015	

Copyright 2015 EVTV LLC 7

SERIAL PORT ISSUES
	
Many	 Arduino	 Due	 programs	 route	 serial	 data	 out	 the	 programming	 port	 for	
viewing	 on	 the	 Arduino	 IDE	 terminal	 using	 simply	 Serial(“Printing some
stuff”);	 statements.	 	 	
	
These	 can	 easily	 be	 rerouted	 out	 the	 native	 USB	 serial	 port	 with	 a	 single	 define	 at	
the	 top	 of	 the	 program:	
	

#define Serial SerialUSB
	
	

Documentation	
	 	 June	 2015	

Copyright 2015 EVTV LLC 8

