EVTV User Guide

Isabellenheutte
|ICD-A-500-CAN1-12
CAN Current Sensor




INTRODUCTION

The Isabellenheutte ICD-A-500-CAN1-12 is a highly compact precision current
measurement device The system uses shunt-based current measurement
technology for maximum accuracy and CAN 2.0A communications to provide
current information remotely.

It consists of a 16Bit ADC for measurement acquisition and a microcontroller for
processing and communication purposes. The current measurement value is
available within a 24Bit range. An internal sampling rate of 1 kHz is used and a
moving averaging filter can be programmed.

The communication is based on CANbus 2.0a/b with a data rate up to 1Mbit/s. A
CANbus data base container (DBC) is available to support fast system integration.
The ICD series is covered with a molded housing to resist a wide range of
environmental influences. With the highly compact design it can easily be integrated
were installation space is limited.

Full documentation for the device is available at:

https://www.isabellenhuette.de/fileadmin/Daten/Praezisionsmesstechnik/Datasheet_ICD V1.00.pdf




SPECIFICATIONS

Battery Circuits

Negative

Mating: TE Connectivity 1-1718646-1
Contacts: 1452671-1

PIN USE

1 CAN LOW
2 CAN HIGH
3 12v return
4 +12vdc

5 Not used
6 Not used

~ Operation conditions
~Parameter

Operating temperature -40 +105 °C
Storage temperature -40 +125 °C
Supply voltage 5.5 12 26 V
Current consumption <15 <30 <50 mA
Current consumption <100 <250 MA
In sleep mode

Re-/ Startup time 250 ms
Waiting time power on/off 2 ms




Maximum ratings

Storage temperature -40 +125 °C
Supply voltage -36 +38 \
~Parameter 500

Extended load (max. time)

5min 730 A

30s +860 A

10s +1000 A

1s +2700 A

200ms +6000 A

Supply voltage measurement

Measurement range +5.5 + 26 V

Initial accuracy +0.1 % of rdg
Total accuracy +0.8 % of rdg
Offset +35 mV
Noise +60 mV (rms)
Resolution 0.5 mV

- Temperature measurement (on-chip)

Measurement range -40 +125 °C
Initial accuracy +3 °C
Total accuracy +5 °C
Resolution 0.1 °C

Communication

CANbus 2.0 a/b 250kbit/s; 500kbits/s; 1Mbit/s 6
Vee Supply voltage for CAN 475 | 525 V
ViorVc Voltage at any bus terminal (separately or common mode) -12 12 V
Vmax Voltage at any bus terminal (max. rating) -26 26 V
ViH High-level input voltage TXD,S 2 5.25 \
Vi Low-level input voltage TXD,S 0 0.8 Vv
Vi Differential input voltage -6 6 \
lon High-level output current gzz:irver _720 m
loL Low-level output current Dnver 0 LLa
Receiver 2 mA




Current measurement

Nominal measurement range +500 A
(depending on shunt)

Power loss <9 W
Overcurrent measurement +2500 A

range

Initial accuracy % of rdg’
Total accuracy % of rdg’
Offset <t 60 mA

Noise <+ 35 mA (RMS)
Linearity ° % of range
Resolution mA

Default values

If using the Reset command with parameter 0x01 (reset all parameters to default) the following values

are reset to its related default value.

Operation Mode

Mode
Output rate
Current direction

0x01 - continues
0x01-1ms
0x00 - positive

Result Ah Counter Ah-Counter value 0x00 - 0 mAs

Averaging Average value 0x01 -1

OC limit Activation limit positive 0x00 00 00
Activation limit negative 0x00 00 00
Baudrate 0x01 - 500k Baud

CAN configuration CAN mode 0x00 — 2.0 a

CAN ID request CANID 0x500

CAN ID response CANID 0x501

CAN ID result CANID 0x502

User PW Mode 0x01 0x30; 0x30; 0x30; 0x30; 0x30; 0x30

Result MSG Structure Result MSG Structure value 0x00 - UBat

Up time Up time value 0x00 00 00 00
Measurement status bits value 0x00 00

Status Bits System status bits value 0x00 00
All measurement counter values | 0x00 00

Event Counter All system counter values 0x00 00




suoisuawi(

9L

87el1
St

>Vd<

V-QOI

l —
&
| N
ot

FA

L0l

&9

(A4

3 3=

{2

NODW ODAL \
JOJ28UU0D



ICDA LIBRARY

EVTV has developed an Arduino ESP32 Class Library for the ICD-A current sensor
device. This allows you to easily use the current sensor in any Arduino style
program for the ESP32.

The Class library comes in two files: ICDA.h and ICDA.cpp.

To use this in your program, add the following include lines to the first lines of your
program:

#include "esp32_can.h" //http://github.com/collin80
#include "ICDA.h"

The sensor requires the ability to send and receive CAN messages and so the CAN
library for the ESP32 also developed also by EVTV must be included.

To instantiate an object of Class ICDA:

ICDA Sensor;
This will create an ICDA object titled Sensor.

To initialize the Sensor object, you must initialize it by specifying a CAN port to use,

Sensor.begin(0); //Initialize an ICDA object using port
CANO

The ICD object will send CAN 0x502 messages with current measurement at a
regular time period of 50ms by default. You can optionally specify the number of
milliseconds between frame transmissions.

Sensor.begin(1,100); //Initialize ICDA object using
port CAN1l using a rate of 100ms between each measurement
0x502 frame.

Finally, the ICDA library can average the current values received using a 100
element round robin float variable array. Larger values have the effect of smoothing
the readings but cause a measurable lag in changes in current. Smaller values make
the readings more responsive, but also more erratic.

Sensor.begin(1,75,50); //Initialize ICDA object to use
port CAN1l using a rate of 75ms between each measurement
0x502 frame and using a 50 element averaging array filter.



The ICDA device will send current measurement data in CAN message ID 0x502.

To process this frame, you must receive it in your main program loop and forward it
to the Sensor object as follows:

Sensor.gotFrame (&inFramel) ;
//Process in incoming 0x502 CAN frame named inFrame1 of data type

Example:

CAN_FRAME inFramel;
if (CANO.available())

{
CANO.read(inFramel);

switch (inFramel.id)

{

case 0x502:
Sensor.gotFrame (&inFramel) ;
break;

This sets up a CAN_FRAME data structure and checks the CANO port to see if
anything is incoming. If so, it stores it in inFrame1l. It then checks to see if
inFramel.id equals 0x502 and if so, forwards it to our Sensor object.

Sensor .deFAULT () ;
//Reset the ICD-A-500-CAN1-12 current sensor to default values. See ICD-A data
sheet.

Sensor.resetAH();

Resets AH variable calculated Sensor.AH but also resets the onboard sensor amp
hour counter Sensor.ah

There are also some ICDA public variables you can access and one of them is rather
important.

Sensor.Voltage



The library will calculate kilowatts and kilowatt hours for you based on current
measurements. But the ICDA device does not measure voltage. And so you should
periodically set the Sensor.Voltage variable to your measured battery pack voltage.

For example, if you keep your battery pack voltage in the variable packvoltage:
Sensor.Voltage=packvoltage;

The ICDA class will also readily calculate State of Charge(SOC) but it needs your
total pack size in ampere-hours.

Sensor.capacity=packsizeinamphours;

List of public variables available in IDCA.

float Amperes; // current in Amperes
float AH; //accumulated ampere-hours calculated
float ah; //accumulated ampere-hours by sensor

float MaxNegAmps; //Peak discharge amps this session
float MaxPosAmps; //Peak charge amps this session

float Voltage; //Pack voltage, SET THIS for kw calcs
float KW; //Instantaneous POWER using Voltage
float KWH; //Accumulated KWH

float SOC; //SOC — capacity+AH/capacity

float capacity; //Pack capacity in AH

int framecount; //Number of 502 frames received

float chargingAH; //Total AH charged

float dischargingAH; //Total AH discharged

float chargingKWwH; //KWH charged

float dischargingKWH; //KWH discharged

uint8_t arraysize; //Averaging filter — SET anytime



