
EVTV	User	Guide	
	

	

Isabellenheutte		
ICD-A-500-CAN1-12	
CAN	Current	Sensor	

	
	

INTRODUCTION	
The	Isabellenheutte	ICD-A-500-CAN1-12		is	a	highly	compact	precision	current	
measurement	device	The	system	uses	shunt-based	current	measurement	
technology	for	maximum	accuracy	and	CAN	2.0A	communications	to	provide	
current		information	remotely.		
	
It	consists	of	a	16Bit	ADC	for	measurement	acquisition	and	a	microcontroller	for	
processing	and	communication	purposes.	The	current	measurement	value	is	
available	within	a	24Bit	range.	An	internal	sampling	rate	of	1	kHz	is	used	and	a	
moving	averaging	filter	can	be	programmed.		

The	communication	is	based	on	CANbus	2.0a/b	with	a	data	rate	up	to	1Mbit/s.	A	
CANbus	data	base	container	(DBC)	is	available	to	support	fast	system	integration.	
The	ICD	series	is	covered	with	a	molded	housing	to	resist	a	wide	range	of	
environmental	influences.	With	the	highly	compact	design	it	can	easily	be	integrated	
were	installation	space	is	limited.	
	
Full	documentation	for	the	device	is	available	at:	
	
https://www.isabellenhuette.de/fileadmin/Daten/Praezisionsmesstechnik/Datasheet_ICD_V1.00.pdf	
	
	
	
	
	
	

	
	
	
	
	
	
	

SPECIFICATIONS	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	

	
	

	
	
	
	
	

	
	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

ICDA	LIBRARY	
EVTV	has	developed	an	Arduino	ESP32	Class	Library	for	the	ICD-A	current	sensor	
device.		This	allows	you	to	easily	use	the	current	sensor	in	any	Arduino	style	
program	for	the	ESP32.	
	
The	Class	library	comes	in	two	files:	ICDA.h	and	ICDA.cpp.	
	
To	use	this	in	your	program,	add	the	following	include	lines	to	the	first	lines	of	your	
program:	
	
#include "esp32_can.h" //http://github.com/collin80
#include "ICDA.h"
	
The	sensor	requires	the	ability	to	send	and	receive	CAN	messages	and	so	the	CAN	
library	for	the	ESP32	also		developed	also	by	EVTV	must	be	included.	
	
To	instantiate	an	object	of	Class	ICDA:	
	
ICDA Sensor;
	
This	will	create	an	ICDA	object	titled	Sensor.	
	
To	initialize	the	Sensor	object,	you	must	initialize	it	by	specifying	a	CAN	port	to	use,		
	
Sensor.begin(0); //Initialize an ICDA object using port
CAN0
	
The	ICD	object	will	send	CAN	0x502	messages	with	current	measurement	at	a	
regular	time	period	of	50ms	by	default.		You	can	optionally	specify	the	number	of	
milliseconds	between	frame	transmissions.	
	
Sensor.begin(1,100); //Initialize ICDA object using
port CAN1 using a rate of 100ms between each measurement
0x502 frame.
	
Finally,	the	ICDA	library	can	average	the	current	values	received	using	a	100	
element	round	robin	float	variable	array.		Larger	values	have	the	effect	of	smoothing	
the	readings	but	cause	a	measurable	lag	in	changes	in	current.		Smaller	values	make	
the	readings	more	responsive,	but	also	more	erratic.		
	
Sensor.begin(1,75,50); //Initialize ICDA object to use
port CAN1 using a rate of 75ms between each measurement
0x502 frame and using a 50 element averaging array filter.

	
	
The	ICDA	device	will	send	current	measurement	data	in	CAN	message	ID	0x502.	
To	process	this	frame,	you	must	receive	it	in	your	main	program	loop	and	forward	it	
to	the	Sensor	object	as	follows:	
	
Sensor.gotFrame(&inFrame1);

//Process	in	incoming	0x502	CAN	frame	named	inFrame1	of	data	type		
	
Example:	
	
CAN_FRAME inFrame1;
if (CAN0.available())
 {
 CAN0.read(inFrame1);
 switch (inFrame1.id)
 {

 case 0x502:
Sensor.gotFrame(&inFrame1);
break;

}
 }

This	sets	up	a	CAN_FRAME	data	structure	and	checks	the	CAN0	port	to	see	if	
anything	is	incoming.		If	so	,	it	stores	it	in	inFrame1.		It	then	checks	to	see	if	
inFrame1.id	equals	0x502	and	if	so,	forwards	it	to	our	Sensor	object.	
	
	
Sensor.deFAULT();
//Reset	the	ICD-A-500-CAN1-12	current	sensor	to	default	values.		See	ICD-A	data	
sheet.	
	
Sensor.resetAH();
	
Resets	AH	variable	calculated	Sensor.AH	but	also	resets	the	onboard	sensor	amp	
hour	counter	Sensor.ah	
	
There	are	also	some	ICDA	public	variables	you		can	access	and	one	of	them	is	rather	
important.	
	
Sensor.Voltage
	

The	library	will	calculate	kilowatts	and	kilowatt	hours	for	you	based	on	current	
measurements.		But	the	ICDA	device	does	not	measure	voltage.		And	so	you	should	
periodically	set	the	Sensor.Voltage	variable	to	your	measured	battery	pack	voltage.	
	
For	example,	if	you	keep	your	battery	pack	voltage	in	the	variable	packvoltage:	
	
Sensor.Voltage=packvoltage;
	
The	ICDA	class	will	also	readily	calculate	State	of	Charge(SOC)	but	it	needs	your	
total	pack	size	in	ampere-hours.	
	
Sensor.capacity=packsizeinamphours;
	
List	of	public	variables	available	in	IDCA.	
	
float Amperes; // current in Amperes
float AH; //accumulated ampere-hours calculated
float ah; //accumulated ampere-hours by sensor
float MaxNegAmps; //Peak discharge amps this session
float MaxPosAmps; //Peak charge amps this session
float Voltage; //Pack voltage, SET THIS for kw calcs
float KW; //Instantaneous POWER using Voltage
float KWH; //Accumulated KWH
float SOC; //SOC – capacity+AH/capacity
float capacity; //Pack capacity in AH
int framecount; //Number of 502 frames received
float chargingAH; //Total AH charged
float dischargingAH; //Total AH discharged
float chargingKWH; //KWH charged
float dischargingKWH; //KWH discharged
uint8_t arraysize; //Averaging filter – SET anytime

