
EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 1	

User	Manual	

CAN Adapter for
Tesla Model 3

	
	
	
	
	

	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 2	

INTRODUCTION	
The EVTV Tesla Model 3 CAN Adapter allows you to easily capture and analyze
Controller Area Network (CAN) Traffic from the Tesla Model 3 Vehicle CAN
bus.

Analyzing the Tesla Model 3 CAN bus is challenging in several ways. First,
unlike Tesla’s Model S and X, the Model 3 provides neither an OBDII connector
nor a CAN diagnostics port. We must insert a harness between two existing
connectors to intercept signals from the vehicle.

Second, these 500kbps CAN busses are heavily loaded – we’ve logged frame
rates as high as 2000 frames per second on a 500 kbps bus. This is far beyond
the abilities of most of the inexpensive OBDII CAN tools available and even
beyond the reach of some commercial devices without dropping frames.

The EVTV Tesla Model 3 CAN Adapter includes:

1. EVTV ESP32 CANDue Microcontroller with a Tesla Model 3
harness/connector.

2. ESP32 Reverse Engineering Tool (ESP32RET) software to run on

the microcontroller.

3. SavvyCAN CAN Data Analysis software to run on any laptop or
desktop computer – Microsoft Windoze, Linux, or MAC OSX.

	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 3	

EVTV	ESP32	CANDue	Microcontroller		

The EVTV ESP32CANDue Microcontroller hardware consists of a 240MHz Dual
Core Espressif ESP32 microcontroller that can be easily programmed in C++
using the free and open source Arduino IDE.
	
The	board	
features	two	CAN	
bus	transceivers.		
It	is	housed	in	a	
plastic	enclosure	
with	a	Mini	B	
Universal	Serial	
Bus	printer	port	
for	connection	to	
a	laptop	and	an	
external	harness	
to	mate	with	the	
Tesla	Model	3	
x930	connector	
in	the	vehicle	
console.
	
The		Espressif	ESP32	chip	features	an	onboard	radio	to	connect	wirelessly	with	a	
variety	of	devices	using	both	Wireless	802.11x	for	TCP/IP	and	UDP	connections	and	
Bluetooth	BLE	commonly	used	to	communicate	with	smart	phones	and	tablets.	

	
	
	
	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 4	

INSTALLATION	
To	install	the	EVTV	ESP32CAN	Model	3	CAN	Adapter:	
	

1. Remove	the	plastic	cover	assembly	from	the	lower	portion	of	the	rear	face	of	the	console.		You	
may	need	to	pry	gently	around	the	edges	with	a	flat	screwdriver	to	gain	an	edge	to	pull	on.		
Pull	it	firmly	to	the	rear.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

2. Disconnect	connector	0x930	by	pressing	the	small	white	tab	and	separating	the	connectors.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 5	

3. Insert	the	harness	assembly	connectors	into	each	of	the	two	0x930	connectors.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

4. Carefully	place	the	cover	into	position	aligning	the	five	seating	pins	and	push	firmly	into	place.	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 6	

SOFTWARE	
The	Tesla		Model	3	CAN	adapter	comes	with	the	ESP32	Reverse	Engineering	Tool	(ESPRET)	software	
installed.		You	can	connect	any	laptop	with	an	ordinary	serial	terminal	screen	to	the	USB	port	of	the	
device	to	connect	directly	to	the	device	if	you	like.			
	
Entering	? on	the	command	line	and	pressing	ENTER	will	cause	a	menu	screen	to	come	up.		You	can	
use	this	to	manually	select	CAN	bus	selections,	speeds,	etc.	
	
Normally,	this	will	not	be	used	by	most	users	of	this	product.	Updates	can	be	obtained	from	
https://github.com/collin80/ESP32RET.	
	
	
A	much	more	capable	CAN	analysis	program	is	available	for	using	the	adapter	from	a	laptop	computer	
via	USB	port.		It	is	titled	SavvyCAN	and	features	a	number	of	advanced	CAN	analysis	functions.		But	it	
makes	it	very	easy	to	log	off	CAN	traffic	and	save	it	to	files,		load	them	later	for	analysis,	and	examine	
them	with	a	number	of	views.	
	
SavvyCAN	is	available	for	Windoze,	Mac	OSX,	and	Linux.		It	exchanges	messages	with	the	Tesla	CAN	
adapter	to	send	and	receive	CAN	message	traffic	automatically.		http://www.savvycan.com	
	
Links	for	both	SavvyCAN	and	GEVRET	are	available	at	the	EVTV	store	website	under	the	detailed	view	
of	the	Tesla	CAN	bus	adapter	product.		These	programs	are	under	continuous	development	so	for	best	
results	ensure	you	have	the	latest	versions	installed.	
	
Either	program	can	also	be	found	at	http://github.com/collin80.	
	
The	basic	process	of	capturing	CAN	data	is	pretty	straightforward:	
	

1. Connect	your	laptop	to	the	USB	port	on	the	EVTV	Model	3	CAN	adapter	
	

2. Start	the	SavvyCAN	software	program	on	your	laptop.	
	

3. In	the	upper	right	hand	corner	of	the	screen,	select	CONNECTIONS	to	bring	up	the	connections	
window.	

	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 7	

	
	

4. Select	Serial	Connection	and	the	serial	port	used	to	connect	to	the	adapter.	
	

	
5. Select	CAN	BUS	0	and	500000	as	the	Speed.		Then	ENABLE	for	the	bus.		

	

NOTE	

SavvyCAN	and	ESPRET	use	the	very	generic	USB	port	configurations	common	on	Linux	or	Mac	OSX	right	
out	of	the	box.		However,	some	Windoze	installation	may	require	installation	of	USB	serial	port	“drivers’	
in	order	to	function	properly.	
	
The	easiest	way	to	do	this	is	download	and	install	the	Arduino	IDE.		This	automatically	configures	your	
Windows	machine	for	the	necessary	USB	serial	port	configuration.	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 8	

	

	
At	this	point	the	SavvyCAN	display	should	start	showing	CAN	traffic	in	the	DATA	field.		Make	sure	
your	Model	3	is	“started”	and	the	dash	instrument	displays	are	live	to	ensure	flow	of	CAN	traffic.		You	
are	now	“recording”	CAN	traffic	from	the	Tesla	Model	S	drive	train	to	memory.	

TOTAL	FRAMES	CAPTURED	
	
This	displays	the	total	number	of	message	frames	received	from	the	adapter	and	held	in	memory.	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 9	

FRAMES	PER	SECOND	
	
This	is	the	rate	of	frames	being	received	per	second.	

SUSPEND	CAPTURING	
	
Pressing	this	button	simply	discontinues	capturing	frames	from	the	port	to	the	memory.		It	also	
changes	the	button	to	RESUME CAPTURING.		In	this	way,	you	can	simply	stop	and	start	frame	
captures	at	will.	

NORMALIZE	FRAME	TIMING	
	
Normally,	the	frames	are	displayed	with	the	time	stamp	applied	by	the	GVRET	device	on	receipt.		This	
is	the	number	of	microseconds	since	the	device	was	first	powered	up.		But	you	might	want	something	
more	in	line	with	the	capture.		Click	NORMALIZE	FRAME	TIMING	to	set	the	FIRST	frame	received	as	
time	000.		All	subsequent	frame	times	will	be	in	relation	to	that	frame.	

CLEAR	FRAMES	
	
This	button	simply	resets	the	logging	memory	to	zero	frames	–	effectively	erasing	everything	you’ve	
captured	so	far.			You	can	use	CLEAR	FRAMES	to	clear	memory	and	then	RESUME	CAPTURING	to	start	
a	fresh	capture	at	any	time.	

AUTO	SCROLL	WINDOW	
	
Normally,	the	data	window	simply	displays	the	first	25	frames	or	so	and	you	can	“scroll”	down	with	
the	mouse	to	view	subsequent	frames.		This	checkbox	allows	you	to	autoscroll	the	window	to	the	left	
so	that	the	newest	data	always	appears	as	the	bottom	line	of	the	screen.		In	this	way	you	are	always	
viewing	the	LAST	25	frames	received.		You	can	still	scroll	up	and	down.	

INTERPRET	FRAMES	
	
Interpret	Frames	allows	you	to	examine	values	contained	in	CAN	frames.		It	performs	any	necessary	
math	functions	on	the	data	for	you	to	get	the	real	value.		For	example,	Voltage	might	be	in	bytes	1	and	
2	of	a	frame	in	LSB/MSB	format,	and	multiplied	by	100.		Interpret	Frames	would	then	take	byte	2	
*256,	add	the	value	in	frame	1,	and	divide	the	total	by	100	to	get	voltage.	
	
These	functions	are	defined	for	each	frame	in	a	Vector	Graphics	format	.DBC	file.		Think	of	this	as	a	
rules	file	or	library	for	all	the	different	data	definitions	you	have.		This	file	can	be	LOADED	by	using	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 10	

the	LOAD	DBC	file	on	the	top	bar	FILE	menu.		They	can	also	be	SAVED	using	the	SAVE	DBC	option	on	
the	same	menu.	
	
DBC	files	are	normally	created	and	edited	separately.	

OVERWRITE	MODE	
Overwrite	mode	shows	all	the	UNIQUE	message	IDs	and	overwrites	each	with	the	latest	data	as	it	is	
received.		Works	in	capture	but	not	on	a		loaded	data	log.	

FRAME	FILTERING	
	
Frame	filtering	is	a	very	powerful	function	allowing	you	to	define	specifically	which	frames	are	
displayed.		The	window	beneath	lists	all	unique	frames	received	so	far.		The	ALL	button	at	the	bottom	
puts	a	check	box	next	to	each	message	ID	assuring	that	they	will	be	captured.		The	NONE	button	
removes	all	checkboxes.	
	
You	can	of	course	put	check	marks	next	to	any	message	IDs	of	interest	and	those	will	subsequently	be	
displayed.	
	
Note	that	all	frames	are	still	captured	to	memory.		The	filter	simply	determines	which	frames	are	
displayed.	

FRAME	NUMBER	
	
Leftmost	column	on	the	display	lists	the	number	of	the	message	frame	received.		Each	incoming	frame	
is	assigned	a	subsequent	number.	

TIMESTAMP	
	
The	time	at	which	the	associated	frame	is	received	starting	with	the	beginning	of	capture.	As	noted,	
this	can	also	be	“normalized”	with	the	first	frame	at	time	00000.	

ID	
	
The	11-bit	or	29-bit	message	identification	number	from	the	received	frame.	

EXT	
	
This	will	display	a	1	if	29-bit	extended	frame	was	received	or	0	if	standard	frame	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 11	

BUS	
	
Some	adapters	can	support	two	CAN	busses	and	SavvyCAN	can	receive	CAN	traffic	from	two	busses	
simultaneously.		This	column	shows	which	bus	(usually	0	and	1)	that	the	associated	message	was	
received	on.		This	will	always	be	0	for	the	Tesla	Model	S	capture	device.	

LEN	
	
Number	of	data	payload	bytes	in	this	message.	

DATA	
	
This	shows	the	actual	data	payload	bytes	received	in	hexadecimal	format.	If	INTERPRET	FRAMES	is	
on	it	may	also	show	additional	data	showing	what	is	contained	in	those	bytes	as	interpreted	by	the	
DBC	file	rules.	
	
	

FILE	MANAGEMENT	
	
In	addition	to	the	main	communications	screen,	
SavvyCAN	has	a	top	bar	menu	allowing	access	to	
other	functions	and	indeed	other	analysis	screens.	

SAVE	LOG	FILE	
	
The	FILE	menu	lists	a	number	of	options	allowing	
you	to	save	and	load	data	in	various	files.	
	
SAVE	LOG	FILE	is	the	most	important	function	of	
SavvyCAN.		It	allows	you	to	save	all	the	CAN	traffic	you	have	captured	to	your	hard	drive	in	a	variety	
of	file	formats	for	later	use	by	SavvyCAN,	or	by	other	programs	or	spreadsheets.	

LOAD	LOG	FILE	
	
Load	logfile	of	course	is	the	other	end	of	this.		In	addition	to	CAPTURING	CAN	data,	SavvyCAN	
provides	many	analysis	tools	that	can	be	applied	to	previously	captured	log	files	as	well.		LOAD	LOG	
FILE	simply	allows	you	to	reload	a	previous	capture	into	memory	for	analysis.	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 12	

SAVE	FILTERED	LOG	FILE	
	
As	previously	described,	the	filter	window	on	the	main	capture	screen	simply	determines	what	
messages	are	DISPLAYED	–	all	messages	being	retained	in	memory.		But	you	may	truly	only	be	
interested	in	a	few	messages.		SAVE	FILTERED	LOG	FILE	allows	you	to	save	a	data	log	of	JUST	the	
frames	of	interest.		In	this	way,	the	next	time	you	load	that	file,	it	will	contain	only	the	messages	of	
interest	and	will	of	course	be	a	much	smaller	file	as	well.	

SAVE	AND	LOAD	FILTER	DEFINITION	
	
Similarly,	there	may	be	quite	a	bit	of	work	developing	your	message	ID	filter	where	you	have	
hundreds	of	possible	messages,	and	several	dozen	that	you	ARE	in	fact	interested	in.		This	function	
allows	you	to	save	a	filter	definition,	and	later	reload	it	without	having	to	manually	check	each	box	
again.	

LOAD/SAVE	DBC	FILES	
	
DBC	files	are	simply	a	file	format	developed	by	Vector	Graphics	to	save	data	definitions	of	CAN	data	in	
a	library	file	allowing	you	to	interpret	those	frames	later	using	the	definitions.		The	file	format	simply	
ends	in	.dbc.			
	
SavvyCAN	actually	supports	the	Vector	data	definition	files	and	you	can	import	and	export	.DBC	files	
from	other	programs	into	SavvyCAN.				You	can	also	EDIT	MESSAGES/SIGNALS	and	SAVE	DECODED	
FRAMES	–	that	is	messages	for	which	the	data	definition	is	known.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 13	

REVERSE	ENGINEERING	TOOLS	
	
SavvyCAN	goes	quite	beyond	
capturing	and	saving	CAN	
messages	from	the	bus.		It	
provides	a	variety	of	data	analysis	
tools	that	can	be	of	huge	assistance	
in	reverse	engineering	what	
messages	do	what	on	a	CAN	bus.	
	
These	tools	are	available	in	the	
RETOOLS	menu	of	the	SavvyCAN	
top	bar	menu.	

FLOW	VIEW	
	
Flow	view	is	provided	to	allow	you	to	select	a	single	message	ID	and	then	follow	its	flow	through	an	
entire	CAN	capture	session,	noting	the	changes	from	frame	to	frame	for	that	single	message	ID.	
	
You	basically	“play”	back	the	capture	recording	while	focusing	on	a	single	frame.			
	
Up	to	8	data	bytes	are	displayed	and	you	can	easily	compare	their	numeric	contents	to	the	startup	
state	or	to	the	previous	frame.	
	
Flow	View	also	graphs	each	of	up	to	8	data	bytes	in	the	payload.			
	
And	finally,	a	64	bit	array	of	all	8	data	bytes	and	each	bit	of	each	byte	is	graphically	represented	on	
screen	so	you	can	see	individual	bits	wink	in	and	out	as	it	changes	from	frame	to	frame.	

FRAME	IDs	FOUND	
	
This	box	lists	all	unique	CAN	messages	available	in	the	current	capture	file	in	memory.		You	select	the	
frame	to	examine	with	Flow	View	by	highlighting	one	of	these	message	IDS.	

PLAYBACK	CONTROL	
	
The	familiar	playback	controls	allowing	you	to	play	through	the	series	of	CAN	messages	of	that	ID,	
either	automatically	or	manually	stepping	through	them	one	at	a	time.	
	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 14	

PLAYBACK	SPEED	
	
Allows	you	to	vary	the	rate	at	which	automatic	playback	occurs.	

	
LOOP	PLAYBACK	
	
With	this	checkbox,	once	end	of	file	is	reached,	you	can	simply	start	over	with	the	first	message	
captured	with	that	message	ID.	

CURRENT	FRAME	
	
Shows	you	total	frames	of	this	message	ID	in	the	file	and	the	frame	number	of	the	current	frame	
displayed	from	this	file.	

SYNCHRONIZE	WINDOWS	
	
When	you	“play	through”	the	sequence	of	occurrences	of	a	byte	in	flow	view,	if	this	checkbox	is	
elected,	the	play	in	flow	view	is	synchronized	and	linked		with	the	action	in	the	main	SavvyCAN	serial	
communications	panel,	AND	with	the	play	through	in	the	GRAPH	VIEW	screen.		So	that	at	any	
particular	moment,	all	three	views	are	displaying	the	same	value.		This	lets	you	STOP	the	action	at	any	
particular	point	in	the	graph	view	of	the	entire	capture,	and	actually	see	the	values	of	the	message	ID	
under	scrutiny	in	flow	view.	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 15	

GRAPH	BY	TIMESTAMP	
	
Normally,	the	frames	for	any	particular	message	ID	are	numbered	for	this	view	and	indeed	on	the	left	
we	display	the	current	frame	number	and	total	number	of	message	frames	of	that	ID.		The	small	graph	
in	the	lower	right	hand	side	of	the	panel	normally	graphs	the	7	data	bytes	by	frame	number.		By	
clicking	this,	the	graph	will	show	TIME	along	the	horizontal	access	instead,	making	it	easier	to	
compare	our	location	with	the	GRAPH	function	elsewhere	or	the	main	data	view.	Shows	graph	of	each	
data	byte	by	time	stamp	of	time	message	received.	

AUTOREFERENCE	
	
Allows	you	to	either	list	the	initial	frame	from	the	file	or	the	previous	frame	displayed	as	the	reference	
frame	which	you	are	comparing	current	frame	to.	
	
The	central	display	area	of	the	screen	shows	the	reference	frame	and	the	current	frame	with	
hexadecimal	values	for	each	current	byte.		These	are	updated	as	the	frames	are	played.	
	

DATA	SEEK	VALUES	
	
Data	seek	values	allows	you	to	set	seek	points	in	the	series	of	messages	to	stop	the	playback.		The	
playback	will	run	until	that	specific	value	is	found	in	that	byte.		At	that	point	it	will	stop.		You	can	then	
change	speeds	or	make	other	adjustments	and	then	continue.	

DATA	BYTE	COLORS	
	
Lists	the	colors	used	to	graph	each	data	byte	in	the	graph	display	to	the	right.		This	running	graph	
updates	as	the	frames	are	viewed	in	their	“flow”.	

BITS	
	
Bits	displays	each	data	byte	from	0	to	7	in	the	data	payload.		It	further	breaks	out	each	bit	of	those	
bytes	as	bit	0-7.		This	forms	a	64-bit	display	grid.	
	
Bits	set	in	the	FIRST	frame	of	this	message	ID	are	displayed	in	black.	
	
Red	denotes	bits	that	WERE	black,,	but	are	currently	reset	(0).	
	
Green	denotes	bits	that	WERE	NOT	set	initially,	but	now	ARE.	
	
	
	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 16	

GRAPH	DATA	
	
Data	graphing	is	a	powerful	analysis	tool	allowing	you	to	graph	data	values	over	time.		Better,	you	can	
graph	several	of	them	over	the	same	time	frame.		This	lets	you	examine	relationships	between	
different	data	as	they	interact.		For	example,	as	you	see	your	torque	increase,	indicating	a	large	

demand	for	current,	you	may	notice	a	smaller	dip	in	
another	value	that	is	concurrent.		That	value	may	turn	
out	to	be	voltage.			But	only	by	seeing	the	two	interact	
can	you	make	that	determination.	
	
To	create	a	graph,	press	CNTRL	and	click	on	the	graph	
screen	to	bring	up	the	graph	menu.	
	
	
This	screen	allows	you	to	do	a	number	of	things.		You	
can	load	and	save	a	graph	definitions	file	containing	
your	graph	definitions.			
	

You	can	also	save	a	graph	IMAGE	file	of	the	graphic	image	as	it	appears	on	screen.	
	
You	can	save	a	spreadsheet	of	the	data	used	on	the	graph.	
	
But	most	importantly	it	allows	you	to	add	a	new	graph.	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 17	

This	is	a	new	data	value	which	will	be	graphed	on	the	form	on	screen.		And	you	can	add	any	number	of	
these	to	the	screen.	
	
When	you	select	ADD	NEW	GRAPH,	you	will	see	a	new	control	box	titled	GRAPH	SETTINGS.		This	is	
where	you	enter	values	defining	what	and	how	to	graph	data.	
	
NAME	is	simply	the	name	of	the	value	shown	in	the	
legend.	
	
ID	is	the	message	ID	of	the	CAN	message	you	wish	to	
graph.	
	
DATA	is	the	crucial	element.		It	defines	the	byte	or	
bytes	to	be	graphed.		This	is	a	value	between	0	and	7	
indicating	a	byte	containing	a	value	of	interest.	
	
You	can	enter	multibyte	values	as	in	2-3	where	bytes	
two	and	three	are	treated	as	a	16-bit	integer.		In	the	
case	of	LSB/MSB	values,	you	can	enter	3-2	to	indicate	
that.	
	
SIGNED	indicates	if	you	want	to	treat	this	as	a	signed	integer	or	unsigned	integer.	
	
MASK	allows	you	to	mask	off	individual	bits	of	the	value	to	ignore.	
	
BIAS	allows	you	to	offset	the	graph	vertically	from	the	zero	origin	line.	
	
SCALE	allows	you	to	multiply	or	divide	the	value	by	any	number	–	effectively	scaling	the	size	of	the	
waveform.	
	
STRIDE	allows	you	to	graph	every	nth	data	point	instead	of	each	one.		For	example,	enter	10	to	graph	
every	10th	message	frame	of	that	ID.		For	some	large	data	sets	or	messages	that	occur	very	frequently,	
this	can	declutter	the	display	and	improve	performance	on	large	data	sets.			
	
And	COLOR	will	allow	you	to	define	what	color	the	graph	line	will	appear.	
	
You	can	click	on	the	timeline	below	to	expand	or	contract	the	graph	in	time.		And	you	can	click	on	the	
values	to	the	left	of	the	graph	to	expand	or	contract	the	range	of	values	depicted.	
	
You	can	also	click/drag	on	the	central	graph	area	to	zoom	BOTH	time	and	value	in	and	out.	
	
In	this	way,	you	can	add	multiple	data	elements	from	the	same	or	different	CAN	messages	all	to	the	
same	graph.		You	can	zoom	in	and	out	and	examine	their	relationships	in	value	and	time.	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 18	

And	you	can	save	your	definitions	or	even	an	image	of	the	graph	to	a	file.		You	can	load	the	definitions	
later	to	graph	the	same	data	from	a	different	log	file.	

FRAME	DATA	ANALYSIS	
	
Select	Frame	Data	Analysis	from	the	RE	TOOLS	menu	to	call	up	the	Detailed	Frame	Information	
screen.	
	
This	screen	provides	statistical	data	
on	each	specific	CAN	message	
received.	
	
All	received	message	IDS	are	listed	on	
the	left	under	the	Frame	IDs	and	
indeed	this	panel	displays	the	total	
number	of	unique	message	IDS	
received	in	this	capture	or	data	log.	
	
Highlight	any	message	ID	to	display	
statistical	details	in	the	right	hand	
panel.	
	
In	this	example,	we	highlight	message	
ID	116	and	see	that	the	capture	log	
contains	21,903	instances	of	this	
message,	that	the	data	length	in	the	
116	message	is	6	bytes,	and	that	the	
average	time	interval	between	
receipts	of	this	message	is	9999	
microseconds	or	about	one	message	
ever	10	milliseconds.	
	
If	we	expand	Data	Byte	1	we	learn	that	
the	value	in	byte	1	ranges	from	0x10	
to	0xC0.		And	a	histogram	provides	
the	number	of	times	each	value	
appears	in	the	data	log.			
	
The	most	common	value	is	0x40	
which	appears	in	20,064	messages.	
	
A	Bitfield	Histogram	actually	shows	the	number	of	times	each	bit	of	the	data	payload	is	true.		We	see	
no	bits	in	Byte	0	are	ever	lit,	but	bit	22	(byte	2,	bit	6)	is	set	12,049	times	in	the	21,903	messages	
received.	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 19	

FILE	COMPARISON	
	
File	comparison	is	a	powerful	function	allowing	you	to	quickly	compare	two	data	logs	and	determine	
what	message	IDs	they	have	in	common,	or	conversely,	which	message	IDs	are	unique	to	one	or	the	
other	of	the	two	files.	
		
Lets	assume	we	have	done	a	CAN	data	capture	of	a	car	NOT	charging	and	then	the	same	car	charging.			
We	might	want	to	see	what	new	message	IDs	show	up	once	we	go	into	charge	mode.	

	
	
	
	

Our	first	order	of	business	is	to	load	our	reference	file.		Click	LOAD	A	FILE.	
	
At	this	point	LOADED	REFERENCE	FRAMES	should	give	us	an	indication	of	the	total	number	of	
reference	frames	in	our	file.	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 20	

	
Click	LOAD	A	NEW	FILE	and	select	a	file	to	compare.		The	file	name	will	be	listed	as	the	File	of	Interest.	
	
At	this	point,	we	will	see	three	expandable	functions	listed	in	the	main	screen.	
	
IDs	found	only	in	file	of	interest.	
IDS	found	only	in	reference	frames.	
	
IDS	found	in	both.	
	
We	can	see	that	we	have	three	new	message	IDs	that	appear	in	our	charging.txt	log	that	do	not	appear	
in	our	notcharging.txt	reference	file.		They	are	0x508,	0x620,	and	0x63A.		Those	message	IDs	might	
bear	further	examination	if	we	were	seeking	clues	to	the	charging	process	in	CAN	data.	
	
Finally	SAVE	DETAILS	TO	FILE	will	allow	us	to	save	this	analysis	to	an	external	file	for	use	elsewhere.	
	
	
	

SENDING	FRAMES	–	SIMULATING	THE	SYSTEM	
	
In	our	work	reverse	engineering	the	CAN	
control	of	various	OEM	electric	vehicle	
components,	the	central	approach	is	to	
FIRST	record	an	actual	CAN	bus	message	
traffic	of	an	operating	CAR	while	it	is	in	the	
act	of	doing	what	we	want	the	component	
to	do.	
	
We	can	then	play	this	recording	back	to	a	
standalone	component,	and	it	should	
respond	exactly	the	way	it	would	if	it	were	
installed	in	the	vehicle.	
	
We	basically	then	discard	individual	messages	from	the	recording,	and	see	if	it	will	still	do	it.	
	
Gradually	we	discard	ALL	the	messages	until	we	get	down	to	JUST	those	messages	required	to	get	the	
component	to	do	the	task.			
	
This	allows	us	to	focus		our	reverse	engineering	and	analysis	on	JUST	those	messages	necessary	to	
operate	the	device	–	ignoring	all	others.		For	most	devices,	this	is	two	or	three	messages	but	in	some	
cases	up	to	a	dozen	we	send,	and	perhaps	a	similar	number	it	responds	with.	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 21	

SavvyCAN	provides	two	functions	just	for	this.		PLAYBACK	and	CUSTOM.			PLAYBACK	is	oriented	
toward	taking	an	entire	log	file,	filtering	some	messages	perhaps,	and	playing	it	back	like	a	recording.	
	
CUSTOM	is	more	a	function	to	design	and	send	individual	frames.				You	could	for	example,	hookup	
SavvyCAN	to	an	operating	vehicle,	and	have	it	periodically	transmit	a	single	frame	containing	some	
data	that	changes	the	operation	of	the	vehicle.		It	doesn’t	send	an	entire	log	file,	just	periodically	
inserts	a	message.	
	

PLAYBACK	
	
As	described,	PLAYBACK	is	provided	to	allow	you	to	“play	back”	a	previous	data	capture	much	as	you	
would	a	tape	recording.		It	simply	puts	the	same	messages	back	on	a	bus	in	the	same	order	they	were	
originally	received.	
	
The	devil	being	in	the	details,	it	also	allows	you	to	modify	this	playback	to	some	degree.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 22	

At	the	top	of	the	playback	screen	are	our	playback	controls	–	much	like	a	video	camera	or	tape	player.	
From	left	to	right,		

	
	–	BACK	steps	backward	one	frame.	
	
	
PAUSE	–	pauses	the	playback	

	
	

REVERSE	–	plays	backwards	from	current	position	
	
	
STOP/RESET	–	ends	playback	and	returns	us	to	frame	one	
	
	
PLAY	–	plays	the	current	file	forward	
	
FORWARD	ONE	FRAME	–	sends	the	next	frame	in	single	step	fashion	

	

PLAYBACK	SPEED	AND	BURST	RATE	
	
Playback	speed	and	burst	rate	allow	you	to	modify	the	speed	at	which	frames	are	sent.		Speed	is	
normally	a	value	in	milliseconds	between	transmissions.		Burst	rate	is	more	how	many	frames	are	
sent	during	that	transmission.			Using	these	two	variables,	you	can	modulate	the	rate	the	CAN	file	is	
sent	out	on	the	bus.		This	can	be	quite	important	as	timing	is,	as	always,	everthing.		It	is	quite	common	
for	equipment	to	receive	frames	every	so	many	milliseconds.		If	they	do	not	receive	them	before	the	
timout,	they	simply	shut	down	and	quit	operating.	
	

CURRENT	PLAYBACK	ITEM		
	
This	simply	lists	the	file	we	are	playing	back.	

CURRENT	FRAME	
	
This	displays	which	frame	we	are	on.		For	example	1215	of	42940	and	gives	us	some	idea	of	where	we	
are	at	in	the	file.	If	for	example,	we	know	we	did	not	put	on	the	brake	and	put	it	in	DRIVE	until	frame	
2145	of	the	capture,	we	can	detect	that	point	in	the	process	by	observing	this	field.	

LOOP	SEQUENCE	
	
This	is	a	checkbox	that	determines	what	happens	when	we	get	to	the	end	of	the	capture	file.		If	it	is	
unchecked,	we	simply	stop.		If	it	is	checked,	we	immediately	go	to	the	first	frame	and	resume	
transmission	there.		In	this	way,	our	file	plays	as	a	continuous	loop.	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 23	

SEND	TO	CAN	BUS	
	
This	drop	down	menu	allows	us	to	select	which	CAN	bus	port	the	data	goes	out	on,.		One	option	is	
none.	

PLAYBACK	SEQUENCE	
	
This	allows	actually	quite	complex	playbacks	using	mulitiple	files.		And	indeed	it	can	do	variable	
passes	in	those	files.		You	could	for	example	go	through	two	iterations	of	file	1,	a	single	iteration	of	file	
2,	and	then	three	iterations	of	file	three	if	desired.	

ID	FILTERING	
	
The	star	of	the	playback	screen	is	of	course,	again	the	ability	to	filter	messages.		This	filter	operates	
exactly	as	our	display	filter	on	the	main	capture	screen,	but	in	this	case,	applying	to	the	messages	
transmitted	onto	the	bus.	
	
This	is	the	most	powerful	function	of	SavvyCAN	actually.		To	take	a	recording	of	CAN	message	traffic,	
transmit	it	onto	a	bus,	and	gradually	decrease	the	messages	sent	until	you	only	have	the	IMPORTANT	
ones	for	your	task.	
	
SELECT	ALL	IDS	and	DESELECT	ALL	IDS	makes	this	easier.		But	again,	the	basics	are	that	if	you	check	
a	box,	the	message	gets	sent,	if	no	checkbox,	it	does	NOT	get	sent.			
	
And	note	that	you	can	do	this	WHILE	a	playback	is	occurring.			So	deselecting	a	message	while	
transmitting	a	file	simply	discontinues	sending	that	message	going	forward.	

	

	

	
	 	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 24	

CUSTOM	
	
Selecting	CUSTOM	from	the	top	bar	menu	calls	up	the	FRAME	SENDER	screen.	
	
Frame	sender	allows	you	to	quickly	design	and	send	custom	CAN	message	frames	onto	the	bus.	

EN	
	
Enable.		If	this	is	checked,	the	program	starts	sending	this	message	periodically.		If	you	remove	the	
checkbox,	it	discontinues.	

BUS	
	
Again,	you	can	output	the	frame	on	any	bus,	typically	0	or	1.	

ID	
	
The	message	identification	number	of	the	message	you	want	to	simulate/send.		Either	11-bit	or	29-
bit.		

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 25	

	

LEN	
	
Length	in	bytes	of	data	payload.		Up	to	8.	

DATA	
	
The	data	bytes	you	want	to	send.	
	

TRIGGER	
	
Triggers	are	a	powerful	and	very	flexible	means	to	determine	WHEN	the	described	frame	is	sent	out	
on	the	bus.		And	there	are	several	conditions	you	can	use	to	trigger	this	transmission.	

 ms

 x

 id

 bus

ms
	
ms	is	the	most	basic	form	of	trigger.		It	simply	specifies	that	the	defined	CAN	frame	go	out	every	x	
milliseconds.		So	40ms	in	this	field	would	indicate	to	send	the	CAN	frame	every	40	milliseconds.	

x
	
This	is	really	a	modifier	to	ms.		It	specifies	the	maximum	number	of	times	the	message	should	be	sent.
So	40ms 100x	would	indicate	that	the	CAN	frame	should	be	sent	every	40ms	until	100	frames	have	
been	sent	then	terminate.	

id
	
id	is	a	trigger	based	on	an	INCOMING	message	frame.			You	can	specify	any	message	id	and	the	
described	frame	will	be	sent	whenever	that	message	is	received.	
	
This	function	also	modifies	the	use	of	ms	and	x.		If	you	specify	an	id,	then	ms	is	the	time	delay	
between	when	the	message	is	received	and	when	the	described	message	is	transmitted.	x	remains	the	
maximum	number	of	times	this	happens.	
	
Id0x222 40ms 100x	would	cause	the	frame	to	be	sent	40	milliseconds	after	0x222	was	received,	
but	this	would	only	occur	on	the	first	100	such	messages	received.	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 26	

bus
	
bus	is	a	modifier	for	id.		In	this	way,	you	can	specify	that	not	only	the	message	ID	has	to	be	correct,	
but	it	has	to	come	in	on	the	correct	bus.	
	
Id0x222 bus0 40ms 10x	would	then	transmit	40	milliseconds	after	message	ID	222	comes	in	on	
bus	0,	but	only	for	the	first	10	instances.		A	222	message	incoming	on	bus1	would	be	ignored	entirely.	
	
These	values	can	also	be	compounded	in	multiple	triggers	separated	by	commas:	

Id0x222 40ms, id0x111 10ms, 1000ms
	
This	would	transmit	40	milliseconds	after	a	222	message	was	received,	but	also	10	milliseconds	after	
a	111	message	was	received.		And	in	any	case,	it	is	going	to	transmit	once	every	1000	milliseconds	
(once	per	second)	whether	or	not	anything	is	received.	
	

MODIFICATIONS	
	
Modifications	is	again	a	powerful	and	flexible	way	of	customizing	our	transmissions	mathematically.	
Let’s	assume	that	the	eight	data	bytes	in	our	DATA	section	are	numbered	from	0	to	7	with	the	last	
data	byte	on	the	right	being	7.		In	modifications,	we	will	refer	to	these	eight	bytes	as	D0-D7.	
	
Modifications	allow	us	to	perform	mathematical	operations	on	these	eight	data	bytes.		The	operations	
include:	
	

+ Addition

- Subtraction

* Multiplication

/ Division

& bitfield operation AND

| bitfield operation OR

^ bitfield operation XOR
	
	
So	for	example:	D0=D0*4	would	replace	the	value	in	data	byte	7	with	that	value	times	4.	
	
Or	it	could	be	a	simple	replacement:	D5=0xF3.		Or	D5=D3+0xF3

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 27	

These	examples	look	more	or	less	like	nonsense.		After	all,	we	can	put	anything	we	like	in	the	data	
fields	anyway.	But	we	can	also	use	the	value	of	incoming	CAN	message	frames	in	our	calculations	and	
that	makes	it	slightly	more	interesting. We	do	this	with	the ID: and BUS: commands.

D3=BUS:0:ID:0x222:D3
	
In	this	example,	we	are	copying	data	byte	3	from	any	message	0x222	arriving	on	bus	0	into	our	own	
D3	data	byte.	
	
These	can	become	quite	exotic:	
	

D3=BUS:0:ID:0x222:D3 + BUS:1:ID:0x123:D7 / 4
	
In	this	case,	we	take	data	byte	3	from	message	222	arriving	on	bus	0,	sum	it	with	data	byte	7	of	
message	123	arrriving	on	bus1,	and	divide	the	result	by	4.		This	calculated	value	is	placed	in	our	data	
byte	3	of	the	frame	we	are	transmitting.	
	

PUTTING	TRIGGERS	AND	MODIFICATIONS	TOGETHER	
	
A	simple	example	illustrates	how	powerful	this	can	be.		Message	222	on	bus	0	carries	motor	coolant	
temperature	in	data	byte	four.		This	is	on	the	bus	going	from	the	Vehicle	Control	Unit	to	an	instrument	
cluster	that	displays	it	on	a	gage.		We	are	going	to	SEND	a	message	0x222	of	our	own.	
	
TRIGGER:	id0x222 bus0	
This	indicates	that	we	are	going	to	send	our	frame	immediately	on	receipt	of	a	message	ID	0x222	on	
bus	0.	

MODIFICATIONS: D0=BUS:0:ID:0x222:D0, D1=BUS:0:ID:0x222:D1,
D2=BUS:0:ID:0x222:D2, D3=BUS:0:ID:0x222:D3, D4=BUS:0:ID:0x222:D4 *2,
D5=BUS:0:ID:0x222:D5, D6=BUS:0:ID:0x222:D6, D7=BUS:0:ID:0x222:D7
	
	
Although	this	is	somewhat	long,	we	are	really	copying	all	the	data	out	of	the	received	message	222	
into	our	own	replacement	message	222	and	sending	it	back	out	immediately.		But	in	the	process,	
coolant	temperature	in	data	byte	4	gets	multiplied	by	2	–	essentially	doubled.			
	
The	instrument	cluster	receives	the	message	from	the	VCU,	but	every	time	it	does,	it	immediately	
receives	one	from	SavvyCAN	doubling	the	value.	And	so	the	instrument	cluster	shows	a	coolant	
temperature	twice	as	high	as	it	actually	is	measured	by	the	vehicle	control	unit.	
	
	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 28	

THE	GRID	
	
You	can	enter	actually	a	number	of	different	messages	on	the	screen	in	what	we	refer	to	as	a	GRID.		
Individual	messages	can	be	enabled	or	disabled	using	the	EN	field	at	different	times	and	for	different	
purposes.	
	
At	the	bottom	of	the	screen	are	several	buttons	for	managing	this	grid.	

ENABLE	ALL	
	
Enables	all	messages	in	the	grid.	

DISABLE	ALL	
	
Unchecks	EN	for	all	messages	in	the	grid.	

CLEAR	GRID	
	
Eliminates	all	current	messages	from	grid.	

SAVE	GRID	
	
Saves	the	current	grid	to	an	.fsd	file	for	later	use.	

LOAD	GRID	
	
Loads	grid	from	a	previously	saved	.fsd	file.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 29	

	

OBDII	ADAPTER	VERSION	
	
A	variant	of	the	CAN	adapter	is	the	J1979	OBDII	version.		This	version	of	the	adapter	features	an	
ON/OFF	power	switch	and	an	On	Board	Diagnostics	version	II	(OBDII)	female	port	much	as	found	in	
almost	all	U.S.	made	vehicles	since	2000.	
	
Please	note	that	the	OBDII	version	comes	with	preloaded	software	and	uses	Over	The	Air	updates	to	
update	this	software.		If	you	install	ESP_RET	in	its	place,	it	cannot	be	reverted	to	OBDII.	
	
OBDII	is	required	by	the	Environmental	Protection	Agency	since	1996	
to	enable	emission	testing	of	all	manufactured	vehicles	in	the	United	
States	and	to	standardize	vehicle	analysis	for	maintenance.	
	
	
The	Tesla	Model	3	does	not	feature	an	OBDII	connector	at	all.		They	
were	the	first	street	legal	electric	vehicle	to	receive	a	waiver	for	this	
requirement.	
	
Five	signaling	protocols	are	permitted	with	the	OBD-II	interface;	most	
vehicles	implement	only	one.	It	is	often	possible	to	deduce	the	
protocol,	based	on	which	pins	are	present	on	the	J1962	connector.	
	
Today,	by	far	the	most	common	is	the	ISO	15765 CAN (250	kbit/s	or	500	kbit/s).	The	CAN	protocol	
was	developed	by	Bosch	for	automotive	and	industrial	control.	Unlike	other	OBD	protocols,	variants	
are	widely	used	outside	of	the	automotive	industry.	While	it	did	not	meet	the	OBD-II	requirements	for	
U.S.	vehicles	prior	to	2003,	as	of	2008	all	vehicles	sold	in	the	US	are	required	to	implement	CAN	as	one	
of	their	signaling	protocols.	

	
In	the	years	since	the	OBDII	
requirement,	a	number	of	third	
party	products	have	evolved	that	
take	advantage	of	the	data	available	
on	the	OBDII	port.		Initially,	this	
consisted	of	devices	to	clear	trouble	
codes	and	diagnose	vehicle	faults.		
But	it	soon	expanded	to	include	
Head	Up	Displays	(HUD),	
specialized	RPM	gauges,	and	today	
includes	monitoring	equipment	
used	by	fleets	and	insurance	
companies	to	monitor	driving.			
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 30	

The	EVTV	ESP32	CAN	adapter,	actually	features	TWO	CAN	ports.		And	so	it	can	monitor	the	Vehicle	
CAN	bus	on	the	Tesla	Model	3	with	one	port,	and	translate	that	data	to	J1979	protocol	Parameter	
Identifiers	(PIDs)	on	the	other,	while	providing	the	actual	standard	OBDII	J1962	connector	on	that	
port.	
	
One	of	the	most	popular	add-ons	for	OBDII	is	the	ELM327	adapter.		This	originally	translated	OBDII	
PIDS	to	Universal	Serial	Bus	(USB)	to	easily	connect	a	laptop.		But	it	further	evolved	to	provide	a	
wireless	connection	using	WiFi	,	Serial	Bluetooth,	and	eventually	Bluetooth	Low	Energy	(BLE_	–	
eliminating	the	necessity	for	the	USB	cable	entirely.	
	
THAT	led	to	an	entire	series	of	add-ons	using	the	ELM327	transmissions	–	including	numerous	smart	
phone	and	tablet	applications.	
	
The	EVTV	CAN	adapter	for	the	Tesla	Model	3	uses	the	Espressif	ESP32	microcontroller.		That	chip	has	
wireless	capability	built	in	to	the	chip	itself	for	WiFi,	Bluetooth,	and	BLE.	
	
EVTV	has	developed	software	to	emulate	an	ELM327	WiFi	module.		You	don’t	need	to	plug	one	into	
the	OBDII	port	at	all	because	the	EVTV	CAN	adapter	does	it	directly.	
	
The	most	popular	program	for	accessing	this	data	via	phone	or	tablet	is	called	Torque	Pro.		It	was	
written	by	Ian	Hawkins	and	it	runs	on	any	Android	platform	device.	It	does	NOT	run	on	Apple	iOS	
devices,	but	there	are	similar	programs	for	Apple’s	iOS.		However,	Torque	remains	the	most	fully	
featured	OBDII	program	to	build	a	car	“dashboard”	available.	
	
One	of	the	reasons	for	its	popularity	is	it	has	developed	into	a	fascinating	dashboard	design	kit.		You	
can	select	from	an	amazing	variety	of	dials	and	gages	and	data	displays	for	all	of	the	SAE	standard	
PIDS,	as	well	as	color	themes,	backgrounds,	etc.		It	has	become	a	busy	box	for	dashboard	designs.	
All	of	these	displays	and	gages	can	be	connected	to	PIDS	to	display	the	data,	and	the	user	can	specify	
the	minimum	and	maximum	values		displayed,	dial	size	and	position,	etc.	
	
In	this	way,	you	can	design	your	own	interface	to	display	any	data	you	like	from	the	OBDII	standard	
PIDS.			Additionally,	Torque	features	additional	PIDs	derived	from	the	phone	and	tablet	itself,	
including	GPS	position,	GPS	speed,	accelerometer	data,	and	more.	
	
More	to	our	purposes,	it	supports	the	addition	of	customized	PIDs.	
	
And	so	EVTV	has	developed	and	tested	a	Torque	interface	for	the	Tesla	Model	3.		You	are	not	limited	
to	this	at	all.		It	illustrates	the	use	of	OBDII	PIDs	for	electric	vehicles.		But	you	can	design	your	own	
Torque	dashboard	using	any	of	the	PIDs	available	from	the	CAN	adapter.		And	these	include	some	
specific	custom	PIDs	developed	for	the	Tesla	Model	3.	
	
Electric	vehicles	simply	have	no	corresponding	data	for	many	of	the	PIDS	important	to	emission	
testing.		We	don’t	have	Mass	Air	Flow	and	oxygen	sensors	and	exhaust	gas	temperature	and	inlet	air	
temperature.		OBDII	is	all	about	emission	testing	of	internal	combustion	engine	vehicles.	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 31	

But	some	obviously	do	–	speed,	rpm,	etc.		Fuel	level	can	be	an	analog	to	our	battery	state	of	charge.		
But	we	have	to	be	a	bit	more	creative	to	find	PIDs	that	can	be	repurposed	to	display	battery	voltage,	
power	in	kilowatts,	inverter	temperature,	and	so	forth.	
	
And	so	in	this	section,	we	describe	the	PID	choices	we	made	to	try	to	translate	a	data	stream	intended	
for	ICE	cars	to	an	electric	vehicle	and	specifically	the	Tesla	Model	3.	
	
Note	that	we	have	translated	a	somewhat	larger	set	of	PIDS	than	we	use	in	our	example	display.		And	
that	set	of	PIDS	is	subject	to	expansion	as	the	need	arises.	
	

	
	
	
	
	
	
	
	
	
	
	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 32	

	
	

Because	of	this,	we	have	also	developed	a	means	to	update	the	adapter	software	using	a	wireless	
connection	to	your	home	wireless	hub/router	over	the	Internet.		You	can	download	and	update	the	
software	very	easily	this	way.	

SAE	J1979	PIDS	
	
ISO	15765	describes	the	physical	and	electrical	properties	of	the	500	kbps	connection.		But	overlaying	
the	basic	CAN	protocol	is	a	higher	level	protocol	for	requesting	and	receiving	diagnostic	data.		This	is	
SAE	J1979.	
	
Basically	it	describes	an	initial	connection	and	the	transmission	of	a	catalogue	of	parameter	
identifiers	(PIDS)	that	the	vehicle	supports.		The	device	connected	to	the	J1962	port	can	then	
REQUEST	any	of	these	listed	PIDS	at	any	time.		The	vehicle	will	reply	with	the	data	described	by	that	
PID	.	
	
This	was	all	designed	for	diagnostics	and	emission	testing	of	internal	combustion	engine	cars.		Electric	
vehicles	do	not	feature	oxygen	sensors,	exhaust	gas	temperature,	manifold	air	flow	or	temperature.		
Indeed	MOST	of	the	standard	PIDS	on	ICE	vehicles	simply	make	no	sense	at	all	in	an	electric	vehicle.	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 33	

	
Throttle	position	and	speed	and	RPM	and	the	odometer	obviously	do.			And	we	can	“repurpose”	some	
PIDS	to	carry	information	that	IS	of	interest	on	an	electric	vehicle,	such	as	battery	voltage,	state	of	
charge,	and	inverter	temperature.	
	
The	ESP32	OBDII	adapter	supports	the	following	PIDS: 	

PID	0x04:		
Calculated	engine	load	(A	*	100	/	255)	–	Percentage.			
This	is	derived	from	the	maximum	torque	value	of	the	Model	3	compared	to	the	current	torque	load.	

PID	0x05:		
Engine	Coolant	Temp	(A	-	40)	=	Degrees	Centigrade	
This	PID	derives	from	the	Model	3	motor	inverter	temperature	

PID	0x0A:		
Fuel	Pressure		
We	use	fuel	pressure	as	a	proxy	for	the	voltage	of	the	high	voltage	battery	

PID	0x0C:		
Engine	RPM	(A	*	256	+	B)	/	4	
We	use	Engine	RPM	to	represent	electric	motor	RPM	which	is	actually	in	this	case	rear	axle	RPM	
times	9	as	the	Tesla	Model	3	currently	has	a	9:1	drivetrain	gear	reduction	

PID	0x0D:		
Vehicle	Speed		
If	the	Tesla	Model	3	is	currently	in	kilometers/hour	mode,	it	sends	vehicle	speed	as	kilometers	per	
hour.		If	in	MPH	mode,	it	sends	as	miles	per	hour.	

PID	0x10:		
	MAF	Air	Flow	as	a	proxy	for	motor	horsepower.		Torque	has	a	display	for	horsepower	
it	calculates	from	vehicle	RPM	and	actual	torque	PIDs	as	well	as	reference	torque	for	
the	vehicle..		But	the	adapter	calculates	it’s	own	horsepower	as	well	and	sends	as	MAF	
air	flow.		Torque	actual	is	in	Newton	Meters	so	it	converts	that	to	ft-lbs	as	well	for	the	
HP	calculation.	
	horsepower=((model3.rearAxleRPM*9)*(model3.torqueActual*0.73756))/5252	

PID	0x11:		
Throttle	position		
This	sends	Model	3	throttle	position	as	a	percentage	of	full	throttle	

PID	0x1C:	
Standard	supported.	Returns	1	=	OBDII	
	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 34	

PID	0x1F:		
Runtime	since	engine	start		
Return	the	actual	board	uptime	in	seconds.		The	adapter	is	powered	by	12vdc	from	the	vehicle	which	
comes	on	when	you	enter	the	car	typically.		So	this	corresponds	reasonably	well.	

PID	0x21:		
Distance	traveled	with	fault	light	lit	(A*256	+	B)	-	In	km	
We	use	this	distance	PID	to	carry	Model	3	Odometer.		

PID	0x22:		
	Manifold	Fuel	Rail	Pressure			0.079(A*256	+	B)	
We	use	this	PID	to	carry	High	Voltage	Battery	Voltage.		It	is	more	accurate	than	Fuel	Pressure	PID	
0x0A	simply	because	it	is	a	two	byte	value	instead	of	a	single	byte.		We	can	get	a	more	accurate	
display	this	way.	

PID	0x2F:	
Fuel	level	as	a	percentage	of	full	
Model	3	SOC	as	a	percentage.	This	value	is	the	Battery	Management	System	state	of	charge	value.		
This	is	modified	in	the	Model	3	for	display.		The	Model	3	actually	derives	a	UI	SOC,	a	min	SOC,	a	max	
SOC,	and	an	avg	SOC.		Oddly,	none	match	the	actual	SOC	displayed	on	the	center	console.	Basically		
they	fudge	the	percentage	a	bit	for	the	driver	based	on	ambient	temperature	and	other	factors	in	the	
MCU.		Minimum	SOC	seems	closest.	

PID	0x32:		
Evaporative	Air	Pressure		
Used	to	carry	power	in	kilowatts	calculated	by	multiplying	battery	voltage	and	current.	

PID	0x42:		
Control	Module	Voltage		
Model	3	12v	battery	voltage.	

PID	0x51:	
Fuel	type.	
Type	8	actually	IS	listed	as	battery	electric	for	fuel	in	the	PID	standards.	

PID	0x5B:	
Hybrid	battery	pack	remaining	life
Model	3	SOC	as	a	percentage.	This	value	is	the	Battery	Management	System	state	of	charge	value.		
This	is	modified	in	the	Model	3	for	display.		The	Model	3	actually	derives	a	UI	SOC,	a	min	SOC,	a	max	
SOC,	and	an	avg	SOC.		Oddly,	none	match	the	actual	SOC	displayed	on	the	center	console.	Basically		
they	fudge	the	percentage	a	bit	for	the	driver	for	probably	well	intentioned	though	misguided	
purposes.		Minimum	SOC	seems	closest.	

PID	0x61:		
Driver	requested	torque	as	a	percentage	of	full	torque	

PID	0x62:		
Actual	Torque	delivered	as	a	percentage	of	full	torque	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 35	

PID	0x63:		
Reference	torque	for	engine	-	presumably	max	torque	in	Newton	Meters	
Currently	sent	as	416	Nm	
	

OBDII	ADAPTER	CONFIGURATION	
	
The	OBDII	adapter	version	doesn’t	actually	use	the	USB	port	for	CAN	traffic.		But	you	can	use	USB	to	
access	a	configuration	screen	that	can	be	helpful.	
	
Use	any	ASCII	terminal	program	from	any	operating	system	on	any	computer.		But	set	the	
communications	settings	for	115,200	bps,	8	data	bits,	no	parity,	1	stop	bit	(8N1).		And	turn	on	line	
feeds	and/or	carriage	returns	to	be	sent	with	any	command.	
	
The	screen	will	be	blank	until	you	enter	“H”	and	press	the	return/enter	key	to	send	the	command.	
Enter	commands	as	shown	with	the	value	you	want	and	a	carriage	return.	
	
Build	number:	109	
	
System	Menu:	
	
Enable	line	endings		(LF,	CR,	CRLF)	
	
Short	Commands:	
	
				h	=	help	(displays	this	message)	
	
				R	=	reset	to	factory	defaults	
	
Config	Commands	(enter	command=newvalue).	Current	values	shown	in	parenthesis:	
	
				LOGLEVEL=1	-	set	log	level	(0=debug,	1=info,	2=warn,	3=error,	4=off)	
	
	
				CAN0EN=1	-	Enable/Disable	CAN0	(Vehicle	CAN	bus	0	=	Disable,	1	=	Enable)	
				CAN0SPEED=500000	-	Set	speed	of	CAN0	in	bits	per	second	(125000,	250000,	etc)	
				CAN0LISTENONLY=0	-	Enable/Disable	Listen	Only	Mode	(0	=	Dis,	1	=	En)	
	
				CAN1EN=1	-	Enable/Disable	CAN1	(OBDII	Port	0	=	Disable,	1	=	Enable)	
				CAN1SPEED=500000	-	Set	speed	of	CAN1	in	bits	per	second	(125000,	250000,	etc)	
				CAN1LISTENONLY=0	-	Enable/Disable	Listen	Only	Mode	(0	=	Dis,	1	=	En)	
	
				FORWARDCAN=0	-	Forward	ALL	CAN	traffic	from	CAN0	to	CAN1	(0	=	No,	1	=	Yes)	
	
				SSID=ESP32OBD2	-	SSID	for	creating	an	adapter	access	point	
				WPA2KEY=	-	WPA2	key	to	use	for	adapter	access	point	
	
				WIFIMODE=1	-	0	=	Connect	to	a	local	AP	as	client,	1	=	Make	an	adapter	AP	
	
				CLIENTSSID=riverhouse	-	SSID	of	local	AP	
				CLIENTWPA2KEY=usatoday	-	WPA2	key	to	use	when	connecting	to	local	AP	
	
				ALLOWSC=	0	-	Allow	SavvyCAN	WiFi	connections	(0	=	no,	1	=	yes)	
	
				UPDATE	-	Update	software	automatically	from	EVTV	server	(Requires	SSID	and	key	of	local	AP	with	Internet)	

	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 36	

BUILD	NUMBER		
This	is	the	version	number	of	the	software	running	on	the	adapter.		Useful	as	you	may	be	updating	it	
using	the	automatic	update	function.	

LOG	LEVEL=1	
We	use	this	for	debugging	mostly.		Leave	at	1.	

CAN0EN=1	
This	is	the	CAN	bus	0	enable	function.		CAN	0	is	connected	to	the	Model	3	adapter	and	scans	the	Model	
3	Vehicle	Drive	bus	for	CAN	messages	from	the	vehicle.		Set	to	1	to	enable	it.	

CAN0SPEED=500000	
This	is	the	CAN	speed	for	CAN0.		Since	the	vehicle	bus	is	always	500,000	you	probably	do	not	want	to	
change	this.	

CAN0LISTENONLY=0	
We	can	set	a	CAN	channel	where	it	“listens	only”	and	does	not	send	any	acknowledgements	or	other	
signals	on	the	bus.			

CAN1EN=1	
This	is	the	CAN	bus	1	enable	function.		CAN	1	is	connected	to	the	J1962	On	Board	Diagnostics	
Connector.	Set	to	1	to	enable	it.	

CAN1SPEED=500000	
This	is	the	CAN	speed	for	CAN1.		Normally	set	to	500,000	but	some	OBDII	devices	require	250000.		

CAN1LISTENONLY=0	
We	can	set	a	CAN	channel	where	it	“listens	only”	and	does	not	send	any	acknowledgements	or	other	
signals	on	the	bus.		This	doesn’t	make	much	sense	on	the	OBDII	connectors.	

FORWARDCAN=0	
We	normally	observe	CAN0	traffic	and	use	the	information	to	respond	to	PID	requests	on	CAN1.	
But	some	applications	require	access	to	ALL	CAN	traffic.		By	setting	FORWARDCAN	to	1	you	enable	
this	feature	and	the	adapter	will	actually	act	as	a	bridge,	copying	all	incoming	CAN0	frames	out	CAN1	
to	the	OBDII	connector.	
	
	But	note	that	the	Model	3	sends	CAN	data	at	rates	up	to	2000	frames	per	second.		This	CAN	simply	
overwhelm	many	OBDII	devices	and	normal	PID	requests	are	set	to	a	much	lower	priority	by	using	a	
very	high	message	ID	number.		So	only	forward	if	you	really	need	to	do	so	as	it	can	make	Head	Up	
Displays	and	phone/tablet	applications	much	slower.	
	
On	the	other	hand,	the	EVTV	OBDII	adapter	uses	WiFi	to	transmit	data.		If	your	application	requires	
Bluetooth	Low	Energy	for	example,	you	can	plug	an	ELM	327	BLE	adapter	into	the	OBDII	connector	
and	receive	all	data	over	the	OBDII	connection	via	the	ELM327	bluetooth	signal.	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 37	

SSID=ESP32OBD2	
This	can	be	any	short	name	you	like.		This	how	you	specify	Station	Set	Identifier	(SSID)	of	the	wireless	
access	point	set	up	by	the	adapter.		You	would	then	“connect”	to	this	AP	from	your	laptop	or	tablet	or	
smart	phone.	

WPA2KEY=	-	
Currently	set	to	–	for	NO	password.			In	this	way,	devices	can	easily	connect	to	the	SSID	without	
entering	a	password.		For	security,	you	may	want	to	add	one.			

WIFIMODE=1		
This	is	for	all	intents	and	purposes	deprecated.		You	will	almost	always	want	to	operate	in	mode	1	as	
this	allows	the	adapter	to	BE	a	wireless	access	point	you	can	connect	to.	
	
In	theory,	you	could	set	it	to	connect	to	your	local	hub,	and	set	your	device	to	connect	to	the	same	hub	
to	receive	the	data.		This	doesn’t	make	much	sense	in	a	car.	

CLIENTSSID=EVTVHUB	
This	is	how	you	specify	the	local	access	point	that	has	an	internet	connection	to	connect	the	adapter	
to	primarily	to	obtain	software	updates.	

CLIENTWPA2KEY=	EvTv	
This	is	the	password	needed	to	access	your	local	AP	to	connect	to	the	Internet.		

ALLOWSC=	0	
The	OBDII	version	of	this	adapter	does	NOT	allow	SavvyCAN	to	access	data	via	USB	port	at	all.		But	it	
can	do	so	from	a	wireless	capable	PC.			And	it	can	also	access	it	from	the	J1962	adapter.	
	
This	variable	determines	whether	you	allow	the	SavvyCAN	program	to	monitor	CAN	traffic	wirelessly	
from	the	adapter.		Note	that	SavvyCAN	can	not	only	capture	data	this	way,	but	it	can	play	back	
recorded	data	IN	to	this	adapter	in	this	way	and	it	will	appear	on	the	vehicle	data	bus.		Loads	of	fun.	
BUT	if	SavvyCAN	can	do	this,	potentially	others	could	transmit	data	into	this	port	and	similarly	have	
fun	putting	CAN	commands	onto	the	Vehicle	CAN	bus	and	controlling	your	car.	
	
No	amount	of	security	would	be	appropriate	here.		But	by	setting	this	to	ZERO,	you	ensure	the	adapter	
doesn’t	receive	anything	at	all	that	could	be	put	on	the	bus.	
	
Note	that	the	facility	to	forward	data	from	the	vehicle	bus	to	the	OBDII	port	is	a	one	way	trip.		NO	data	
from	the	physical	port	OR	received	wirelessly	can	go	the	other	way	BACK	onto	the	vehicle	bus	with	
the	lone	exception	of	SavvyCAN	and	then	only	when	this	is	set	to	1.		Normal	operation	should	always	
have	this	set	to	0.			
	
Set	to	1	to	enable	a	SavvyCAN	connection	for	capture	and	analysis.		Don’t	forget	to	set	this	back	to	0	
when	that	analysis/test	is	complete	as	leaving	it	enabled	poses	a	severe	security	risk	to	your	car.	
	
You	can	connect	SavvyCAN	via	the	OBDII	J1962	connector.		This	requires	BOTH	the	FORWARDCAN=1	
and	the	ALLOWSC=1	to	work.		And	you	will	need	a	second	CAN	adapter	wired	to	connect	to	the	J1962	
mating	connector.	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 38	

UPDATE	
UPDATE	is	one	of	the	more	interesting	features	of	the	OBDII	adapter.		IF	you	have	a	client	SSID	and	
password	entered	above	and	if	your	local	wireless	hub	is	up	and	connected	to	the	Internet,	the	
UPDATE	command	will	cause	the	adapter	to	turn	off	it’s	AP,	connect	to	your	Wifi	AP,	and	go	out	
through	the	internet	to	download	the	latest	binary	version	of	this	software.		It	will	then	reboot	the	
adapter	into	this	latest	software	version.			
	
In	the	event	you	don’t	LIKE	the	new	version,	enter	REVERT	to	go	back	to	the	previous	version	in	
memory.	

TORQUEPRO	Tesla	Model	3	Dashboard	
	
TorquePro	is	an	Android	application	allowing	you	to	design	your	own	vehicle	“dashboard”	and	
display	it.		Each	gage	is	tied	to	a	parameter	identifier	(PID)	transmitted	by	the	ESP32	OBDII	adapter.	
	
In	this	way	you	can	“view”	your	Tesla	Model	3	data	in	real	time.	
	
You	can	select	from	a	variety	of	gages	and	dials	and	graphs	in	designing	your	dashboard.		And	you	can	
save	and	load	different	dashboards	from	memory.	
	
To	get	started,	we	have	created	the	TeslaModel3	dash	file	to	to	demonstrate	what	is	possible	with	
TorquePro.		You	can	modify	and	extend	this	file,	or	start	over	entirely	with	your	own	design.	
	
The	file	is	titled	TeslaModel3.dash	and	may	be	downloaded	from	the	ESP32	OBDII	description	on	our	
web	site	at	http://store.evtv.me.	
	
To	use	it:	
	

1. Place	the	file	in	the	InternalStorage/.torque/dashboards	directory.	
	

2. Start	TorquePro	and	select	REALTIME	INFORMATION.	
	

3. Tap	the	settings	GEAR	symbol	to	bring	up	settings.	
	

4. Select	Layout	Settings	
	

5. Select	Import	Layout	
	

6. Select	TeslaModel3.dash	
	

	
	
	

	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 39	

TORQUEPRO	Tesla	Model	3	Extended	PIDs	
	
TorquePro	provides	a	means	for	adding	extended	or	modified	Parameter	Identifiers	–	basically	
custom	PIDS.	
	
The	PIDS	are	provided	in	a	Comma	Separated	Values	–	CSV	file.		It	must	follow	a	specific	Torque	app	
format	and	appear	in	the	.torque/extendedpids	folder.		You	must	load	it	using	the	MANAGE	PIDS	
function	one	time.		Thereafter	it	will	always	be	part	of	your	vehicle	profile.	
	
We	have	created	a	TeslaModel3.csv	file	for	just	this	purpose.		To	use	it:	
	

1. Download	the	TeslaModel3.csv	file	from	the	detailed	description	of	the	OBDII	adapter	on	the	
web	site	http://store.evtv.me	using	your	Android	device.	
	

2. Turn	on	SHOW	HIDDEN	FILES	in	your	Android	file	manager.	
	

3. Copy	the	file	into	the	hidden	directory	InternalStorage/.torque/extendedpids	
	

4. Bring	up	the	Torque	Application	main	screen.	
	

5. Tap	on	the	gear	icon	to	select	settings	and	then	tap	SETTINGS.	
	

6. Scroll	down	until	Manage	extra	PIDS/Sensors	appears	on	menu	and	select	it.	
	

7. Press	the	three	vertical	dots	in	the	upper	right	hand	of	screen	to	bring	up	a	menu.	
	

8. Select	Add	predefined	set	from	the	menu.	
	

9. Select	TeslaModel3	from	the	list	that	appears.	
	
Once	you	have	imported	the	TeslaModel3.csv	file,	you	need	not	do	so	again.		The	PID	extensions	
will	remain	in	your	vehicle	profile	each	time	you	load	the	app.	
	
Subsequently,	when	you	add	a	gauge	to	your	dashboard,	the	Tesla	PIDS	will	appear	at	the	top	of	the	
list	of	PIDs	to	select	from.		We	prefaced	each	entry	with	a	period	so	they	appear	first	in	the	lengthy	list	
of	PIDs	provided	by	Torque.	
	
Generally,	the	OBDII	adapter	supports	standard	PIDS	where	they	make	sense.		But	the	additional	
Tesla	specific	definitions	are	often	more	accurate	and	useful.		And	in	some	cases,	they	represent	
values	that	cannot	be	carried	in	standard	PIDS.	Both	will	continue	to	work.	
	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 40	

TeslaModel3.csv	
"Name", "ShortName", "ModeAndPID", "Equation", "Min Value", "Max Value", "Units", "Header",
"startDiagnostic", "stopDiagnostic"

".Tesla Battery Voltage", "Battery", "019A", "FLOAT32(A:B:C:D)", "280", "400", "VDC", "7e0", "", ""

".Tesla RPM","RPM","019B ","(A*256+B)","0","15000","RPM","7e0","",""

".Tesla Motor Temp","Stator","019C","A","0","100", "C","","","",

".Tesla KWH Remaining", "Remaining", "019D","((A*256+B)/100)","0","100","kWh","7e0","",""

".Tesla Rear Torque NM","Rear Drive","01A1","FLOAT32(A:B:C:D)","-60","360","Nm","","",""

".Tesla Front Torque NM","Front Drive", "01A2","FLOAT32(A:B:C:D)","-60","360","Nm","","",""

".Tesla Rear Torque Ft/lbs","Rear Drive","01A1","FLOAT32(A:B:C:D)*0.73756","-60","360","Ft/lbs","","",""

".Tesla Front Torque Ft/lbs","Front Drive", "01A2","FLOAT32(A:B:C:D)*0.73756","-60","360","Ft/lbs","","",""

".Tesla Battery Current","Current", "01A3","FLOAT32(A:B:C:D)","-1000","500","Amps","7e0","",""

".Tesla Power","Power", "01A4","FLOAT32(A:B:C:D)","-100","300","kW","7e0","",""

".Tesla Horsepower", "Horsepower", "01A5", "FLOAT32(A:B:C:D)"," 0"," 300", "Hp", "7e0", "", ""

".Tesla Torque","Torque", "01A6","FLOAT32(A:B:C:D)","0","500","Nm","7e0","",""

".Tesla Torque Ft/lbs"," Torque","01A6", "FLOAT32(A:B:C:D)*0.73756"," 0", "300"," Ft/lbs","7e0", "",""

".Tesla State of Charge","SOC", "01A7","FLOAT32(A:B:C:D)","0","100","%","7e0","",""

".Tesla Rear Drive Unit Power","Rear Drive", "01A8","FLOAT32(A:B:C:D)","-100","300","kW","7e0","",""

".Tesla Front Drive Unit Power","Front Drive", "01A9","FLOAT32(A:B:C:D)","-100","300","kW","7e0","",""

Name	
The	name	is	a	title	that	will	appear	in	the	PID	list	for	TorquePro	when	you	add	a	gage.		We	preface	the	
names	with	a	period	so	they	will	appear	at	the	top	of	the	lengthy	list	of	PIDs	TorquePro	supports.	

Short	Name.	
The	Short	Name	is	actually	text	that	will	appear	top	center	of	most	gages	you	might	use	identifying	
what	is	measured.	

Mode	and	PID	
All	custom	PIDs	used	by	the	Tesla	Model	3	OBDII	adapter	will	use	mode	01	as	specified	by	the	first	
two	characters	of	this	field.		It	is	the	most	common	PID	mode.	
The	subsequent	two	characters	are	the	hexadecimal	address	of	the	specific	PID	described.	

Equation	
The	Equation	is	an	arithmetic	operation	performed	by	TorquePro	on	the	data	received	from	this	PID.		
Normally	A	is	the	first	data	byte	of	the	transmission,	B	second,	C	third,	etc.		PIDs	may	be	as	short	as	
one	byte	or	much	longer	in	some	cases.	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 41	

For	maximum	precision	and	accuracy,	we	often	store	32-bit	floating	point	variables	in	a	four	byte	PID	
for	transmission	and	TorquePro	can	then	reconstruct	these	directly.	

Min	Value	
The	minimum	value	is	the	minimum	data	that	will	be	shown	on	the	display.		You	can	easily	modify	
this	when	adding	a	display,	but	this	represents	the	default	value.	

Max	Value	
Maximum	value	represents	the	maximum	value	displayed	by	a	gage.		Again	this	is	the	default	and	can	
be	overridden	later	during	gage	design.		And	feel	free	to	do	so.		Because	of	the	variety	of	Tesla	Model	3	
configurations,	you	WILL	find	the	maximum	value	for	an	all-wheel-drive	“performance”	version	
completely	different	from	a	rear	wheel	drive	standard	version	for	example.		TorquePro	makes	this	
easy	to	accomplish.	

Units	
Units	is	a	simply	short	text	string	that	will	be	shown	bottom	center	on	most	gages	to	define	what	is	
being	measured	–	kW,	VDC,	Amps,	Mph,	etc.	

Header	
Header	is	the	type	of	request	response	related	to	mode.		If	left	empty	it	will	be	automatic.		But	we	set	
to	7E0	for	clarity.		This	is	the	most	common	PID	request	mode.	
	

SAVVYCAN	and	OBDII	Version	
	
As	previously	noted,	the	OBDII	Version	software	is	NOT	open	source	and	is	normally	updated	by	a	
binary	over	the	air	wireless	update	from	our	Amazon	S3	bucket	storage.	
	
For	some,	the	advantages	of	open	source	and	USB	connection	to	the	adapter	may	be	of	advantage	and	
we	make	this	adapter	available	with	the	ESP32_RET	reverse	engineering	tool	software	separately.		
Generally	you	will	find	high	speed	performance	for	data	logging	slightly	better	using	the	ESP_RET	
version	as	it	is	a	smaller,	lighter,	faster	program.	
	
But	the	OBDII	version	has	some	SavvyCAN	connectivity	and	indeed	it	makes	wireless	data	logging	
very	easy.		It	CANNOT	be	used	with	USB	connection.	
	
To	use	it	with	SavvyCAN,	on	the	OBDII	configuration	screen	you	must	set	ALLOWSC=1.	
	
To	“connect”	with	the	adapter	from	SavvyCAN	running	on	a	laptop:	
	

1. Turn	on	the	ESP32	OBDII	adapter	by	activating	the	ON/OFF	switch.		The	car	must	be	active	to	
provide	12vdc	to	power	the	device.	
	

EVTV		 Version	1.21	 May	2019	

Copyright 2019
 – EVTV LLC	 42	

2. Use	the	normal	laptop	wireless	feature	to	“connect”	to	ESP32OBD2	access	point.		Note	that	this	
SSID	can	be	changed	in	the	configuration	program	for	the	adapter	and	a	password	may	be	
optionally	specified.	

	
3. Select	the	SavvyCAN	application.	

	
4. Select	CONNECTION	to	bring	up	the	connection	window.	

	
5. Select	ADD	NEW	DEVICE	CONNECTION	to	bring	up	the	NEW	CONNECTION	window.	

	
6. Select	NETWORK	as	the	connection	type.	

	
7. Select	192.168.0.10	from	the	picklist	displayed.		

	
8. Select	CREATE	NEW	CONNECTION.	

	
This	should	result	in	a	connection	being	shown	on	the	connection	window.		It	should	indicate	
CONNECTED	or	NOT	CONNECTED.		If	it	is	NOT	CONNECTED,	you	will	need	to	repeat	the	procedure	to	get	
an	indication	of	CONNECTED.	
	
At	that	point,	you	should	see	CAN	data	streaming	in	the	main	SavvyCAN	window.	Set	AUTO	SCROLL	
WINDOW	to	observe	this.	
	
After	completing	your	logging	session,	save	the	data	collected	as	follows:	
	

1. On	SavvyCAN	top	menu	bar	select	FILE.	
	

2. On	drop	down	menu	list	select	SAVE	LOG	FILE.	
	

3. You	should	get	a	standard	file	saving	window	depending	on	your	laptop	operating	system	
allowing	you	to	name	and	save	the	log	file.		This	can	be	done	in	a	variety	of	formats.	

	
	
It	is	also	possible	to	connect	SavvyCAN	to	the	J1962	OBDII	connector	by	using	a	second	CAN	adapter	
for	SavvyCAN.		It	must	be	wired	for	the	correct	pins	on	the	mating	J1962	connector.		Additionally,	two	
settings	are	required:	
	
FORWARDCAN=1		This	echoes	all	vehicle	CAN	to	the	J1962	connector.	
ALLOWSC=1		This	allows	all	CAN	received	on	the	J1962	adapter	to	be	echoed	back	to	the	vehicle	CAN	
bus.		
	
	
	
	
	

